By connecting a capacitor in series the total dielectric thickness between the positive and negative terminals of the source, since you double dielectric thickness has effectively doubled, the total capacitance is one half of either capacitors.
The relationship between potential difference and capacitance in a capacitor is that the potential difference across a capacitor is directly proportional to its capacitance. This means that as the capacitance of a capacitor increases, the potential difference across it also increases, and vice versa.
The electric field strength in a parallel plate capacitor is directly proportional to the capacitance of the capacitor. This means that as the capacitance increases, the electric field strength also increases.
In an electrical circuit, voltage is directly proportional to charge and inversely proportional to capacitance. This means that as the voltage increases, the charge stored in the capacitor also increases, while capacitance decreases. Conversely, if capacitance increases, the voltage across the capacitor decreases for a given charge.
you have it reversed. capacitance increases with decrease in distance of plates.
Answer: Capacitance is unaffected by frequency; it does not change. Details: Capacitance is unaffected by frequency. In a capacitor, what increases with Frequency is Admittance (analogus to Conductance) . The capacitive Reactance is inversely proportional to Frequency. Therefore, when Frequency is increased, current flow may increase.
Inserting a dielectric other than air or vacuum between the plates of a capacitor increases the capacitance of the capacitor. The dielectric material increases the electric field strength within the capacitor, which enhances its ability to store charge. This results in a higher capacitance value compared to having air or vacuum between the plates.
Definitely not possible. Capacitance is given by an expression C = epsilon x A / d Since charge is not present the capacitance cannot be increased or decreased by the charge placed
When a dielectric is inserted between the plates of a capacitor, it increases the capacitance of the capacitor. This is because the dielectric material reduces the electric field between the plates, allowing more charge to be stored on the plates for a given voltage.
Capacitance is a measure of how much charge a capacitor can store for a given voltage. As the voltage across a capacitor increases, the capacitance typically remains constant. However, in some cases, the capacitance may change slightly due to factors like dielectric breakdown or non-linear effects.
Q = CV, Q is charge, C is capacitance, V is voltage. C= Q/V = dQ/dV since it is linear function = 0.41F
Capacitance definitely increases
Yes. Increasing the plate area of a capacitor increases the capacitance. The equation of a simple plate capacitor is ...C = ere0(A/D)... where C is capacitance, er is dielectric constant (about 1, for a vacuum), e0 is electric constant (about 8.854 x 10-12 F m-1), A is area of overlap, and D is distance between the plates. (This is only a good estimate if D is small in comparison to A.) Looking at this, you can see that capacitance is proportional to plate area.