doping profile
The collector voltage is not necessarily approximately zero when a transistor has a collector-emitter short. It depends on whether or not there is an emitter resistor.A typical collector-emitter circuit has two resistors, one in the collector and one in the emitter. One or both of them might be zero, i.e. not present, depending on design requirements. The collector-emitter junction represents a third resistor, the value of which is dependent on base-emitter vs collector-emitter current ratios and hFe.If the collector-emitter junction is shorted, then this circuit degrades to a simple voltage divider, or single resistor, and the collector-emitter voltage differential will be approximately zero. Simply calculate the voltage based on the one or two resistances.Results could be different than calculated, if the resistors are small in camparision to the shorted impedance, and it could be different depending on the base to emitter or collector relationship in that fault state, though the latter case is usually negligible due to the relatively high resistances of the base bias circuit.
The percentage of doping in emitter is higher than collector region.hence large current is flow to emitter than collector.
The percentage of doping in emitter is higher than collector region.hence large current is flow to emitter than collector.
1st pin is emitter then collector and base
some of emitter current goes out base instead of collector
In a common emitter amplifier, the base-emitter current causes a corresponding collector-emitter current, in the ratio of hFe (beta gain) or collector resistance over emitter resistance, which ever is less. Since this ratio is usually greater than one, the differential collector current is greater than the differential base current. This results in amplification of the base signal. As you increase the base-emitter current, the collector-emitter current also increases. This results in the collector being pulled towards the emitter, with the result that the differential collector voltage decreases. This results in inversion of the base signal.
The percentage of doping in emitter is higher than collector region.hence large current is flow to emitter than collector.
The transistor has three regions, emitter,base and collector. The base is much thinner than the emitter while the collector is wider than both. However for the sake of convenience the emitter and collector are usually shown to be of equal size. The transistor has two pn junctions that means it is like two diodes. The junction between emitter and base may be called emitter-base diode or simply the emitter diode.The junction between base and collector may be called collector-base diode or simply collector diode. The emitter diode is always forward biased and the collector diode is always reverse biased.
The transistor acts like a normal pn diode. in NPN transistor the both n i.e.,collector and emitter ane shorted then they become a n and other is p so pn diode is formed. When the emitter and the collector of a transistor are short, the emitter current =the collector current.
# parameter are usually the base current ib,collector current ic,emitter current ie,collector emitter voltagevce,base emitter voltagevbe,collector base voltagevcb which decide the operation &output of the transistor
The emitter and collector pins are the outer pins, and on a metal can transistor, the emitter pin will be closest to the bit of metal that sticks out. For transistors with a flat side, the pins could be either Emitter, Base, then Collector with the flat side facing toward you, or Collector, Base, Emitter, or very rarely something else, so the datasheet should be consulted (search online for whatever is marked on it). On power transistors, it is Emitter, Collector, Base, with the metal tab facing you.
Emitter, Collector and Base cutoff region, saturation region, and liner region