answersLogoWhite

0

What is the muon's mass?

Updated: 8/11/2023
User Avatar

Wiki User

14y ago

Best Answer

Muons decay by various methods, primarily, due to the weak interaction, into an electron and two neutrinos. The mass of the muon is 105.7 MeV/c2, with the mass of the electron being 0.511 MeV/c2, and the mass of the neutrino is less than 2.2 eV/c2. As a result, the loss of mass from muon decay, which is carried away as energy, is around 105.2 MeV/c2.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

11y ago

There are many different mesons, most of which have different masses. You'll need to be more specific.

This answer is:
User Avatar

User Avatar

Wiki User

14y ago

105.7 MeV/c2

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the muon's mass?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

What are muons?

The muon (from the letter mu (μ)--used to represent it) is an elementary particle with negative electric charge and a spin of 1/2. It has a mean lifetime of 2.2μs, longer than any other unstable lepton, meson, or baryon except for the neutron. Together with the electron, the tau, and the neutrinos, it is classified as a lepton. Like all fundamental particles, the muon has an antimatter partner of opposite charge but equal mass and spin: the antimuon, also called a positive muon. Muons are denoted by μ− and antimuons by μ+. For historical reasons, muons are sometimes referred to as mu mesons, even though they are not classified as mesons by modern particle physicists. Muons have a mass of 105.7 MeV/c2, which is 206.7 times the electron mass. Since their interactions are very similar to those of the electron, a muon can be thought of as a much heavier version of the electron. Due to their greater mass, muons do not emit as much bremsstrahlung radiation; consequently, they are highly penetrating, much more so than electrons. Muons have a life of about 2 nanoseconds.


A particle in a atom that has a negative charge is a?

Electrons and down quarks have negative charge, as do strange and bottom quarks, along with muons and taus.


What is the amount of matter in an object?

Its mass.


What is a mass-mass problem?

A mass-mass problem is a kind of problem wherein a person is asked to find an answer which is also a mass. In this, a person is given mass of a compound and then asked to find the mass of another compound.


How is density of a material is calculated?

Divide the mass by the volume.Divide the mass by the volume.Divide the mass by the volume.Divide the mass by the volume.

Related questions

What are examples of hadrons?

Electrons, muons, and taus having negative charge and a distinct mass each .


What are muons?

The muon (from the letter mu (μ)--used to represent it) is an elementary particle with negative electric charge and a spin of 1/2. It has a mean lifetime of 2.2μs, longer than any other unstable lepton, meson, or baryon except for the neutron. Together with the electron, the tau, and the neutrinos, it is classified as a lepton. Like all fundamental particles, the muon has an antimatter partner of opposite charge but equal mass and spin: the antimuon, also called a positive muon. Muons are denoted by μ− and antimuons by μ+. For historical reasons, muons are sometimes referred to as mu mesons, even though they are not classified as mesons by modern particle physicists. Muons have a mass of 105.7 MeV/c2, which is 206.7 times the electron mass. Since their interactions are very similar to those of the electron, a muon can be thought of as a much heavier version of the electron. Due to their greater mass, muons do not emit as much bremsstrahlung radiation; consequently, they are highly penetrating, much more so than electrons. Muons have a life of about 2 nanoseconds.


How do isotopes gain stability?

Through neutron bombardment. Muons produce neutrons and isotopes can be naturally stabilized via muons


What is in the center of the atom?

Nucleus. Composed of Protons and neutrons. Can be sub-divided further but you probably don't have to know that. (quarks and muons and such.)


How do pions decay into muons?

Negatively charged pions decay into muons and muon anti-neutrinos via the weak nuclear interaction. The probability of such a decay occurring is approximately 99.98%. Muons can also decay into electrons and electron anti-neutrinos, but the probability of such a thing occurring is only about 0.012% Positively charged mouns decay into anti-muons and muon neutrinos instead. Neutral pions decay into either two photons or a photon and one electron and one positron. One decay of a negatively charged pion produces one muon and one muon anti-neutrino.


What are the example of cosmic radiation?

Although there are many forms of radiation with zero rest mass, none of these forms of radiation are at rest. They possess energy and, as a result, also possess mass. The mass of any radiation can be calculated from its energy by the equation m=E/c2 where m is its mass (kg), E its energy (joules) and c its velocity. This is just another way of expressing the equation we have all heard E=mc2. A good example is light. Although it has zero rest mass, it travels at 2.998 x 108 m/s and has energy. It therefore possesses mass. The energy of a photon (quantum of light) is determined by its frequency and is given by E=hf where E is its energy, h is plank's constant (approx 6.6262 x 10-34 joule/sec) and f is its frequency in Hertz (Hz). Suppose we take a microwave with a frequency of 10GHz. The energy of a single photon will be 6.6262 x 10 -24 joules. Further dividing this by the speed of light squared gives the mass of such a photon as 7.3 x 10-39 kg. That is VERY VERY VERY small but it is not zero. In the end, there are no forms of massless radiation.


What part do particles play in radiation?

Particle radiations: alpha particles, beta particles, positrons, neutrons, protons, muons, neutrinos, etc.


A particle in a atom that has a negative charge is a?

Electrons and down quarks have negative charge, as do strange and bottom quarks, along with muons and taus.


What are the smaller particles that make up muons?

A Muon is currently considered an 'elementary particle', it has no known components. If a Muon is made out of smaller particles, they are unknown.


The atomic subunit that has a negative charge is the?

Electrons and down quarks have negative charge, as do strange and bottom quarks, along with muons and taus.


What has the author Colm O'Sullivan written?

Colm O'Sullivan has written: 'Some properties of a neutral component of the cosmic radiation' -- subject(s): Cosmic rays, Muons, Spark chamber


What is smaller than the periodic table of elements?

Particles smaller than elements are called sub atomic particles. Among these are: Protons, Neutrons, Electrons, Photons, Gluons, Mesons, Bosons, Muons, Quarks, and more.