answersLogoWhite

0


Best Answer

No way of telling. to get amps you have to have a current flow, which you get when you connect a consumer to an outlet. Then the consumer will pull amps according to its wattage rating (Watts / Volts = amps) - assuming it's all hooked to a fuse with enough rating.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

15y ago

120 Joules per Coulomb

This answer is:
User Avatar

User Avatar

Wiki User

8y ago

120 Joules

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How many joules per coulomb are given to charges that flow in a 120 volt circuit?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How many joules per coulomb are given to charges that flow in a 119 volt circuit?

119 joules per coulombCharges don't get joules as they flow through a circuit. They lose them.Every coulomb of charge that flows through a circuit ... from one terminal of a119-volt power supply, around the circuit, and back to the other terminal ...loses 119 joules during the trip.


How much energy given to each coulomb of charge passing through a 6 volt battery?

The potential difference ('voltage') is equal to the work done per unit charge, i.e. the energy given to each Coulomb of charge. So, a six Volt battery provides six Joules of energy to each Coulomb of charge.


How much energy is given to each coulomb of charge that flows through a 1.5 volt battery?

1.5 volts means 1.5 joules/coloumb.


How much energy is given to each coulomb of charge passing through 6V battery?

<p><p> Voltage = 6 V Charge = 1 C Current * Time = Charge V * t = Q Energy = Current * Voltage * Time E = VIt E = Q * V E = 1 C * 6 V E = 6 Joules Therefore energy given to each coulomb of chare passing through 6 V battery is 6 Joules . Cheers !


What is meant by the terms electric current?

Current is the amount of electrical charge that flows past a given point in a given time. Current is measured in Amperes, which is Coulombs per Second. Sometimes, erroneously, we use the term current to refer to voltage or power. Voltage is Joules per Coulomb. Power is Joules per Second, or Voltage times Current.


What is voltage in a electrical circuit?

'Voltage' is synonymous with, that is, another name for 'potential difference'. When a potential difference is applied across the ends of a conductor, a current will pass along that conductor.Potential difference is a measure of the energy (measured in joules) required to transport electrical charges (measured in coulombs) between two points along a conductor, and is expressed in joules per coulomb which, in the SI system, is given a special name, the volt (symbol: V), named in honour of an Italian physicist, Count Allesandro Volta. So, voltage or potential difference is measured in volts.


What is ment by current?

Current is the amount of electrical charge that flows past a given point in a given time.Current is measured in Amperes, which is Coulombs per Second. Sometimes, erroneously, we use the term current to refer to voltage or power. Voltage is Joules per Coulomb. Power is Joules per Second, or Voltage times Current.


What unit is represented by joule per coulomb?

In SI, the 'volt' is a special name given to a joule per coulomb.


What unit is represented for coulomb per second?

The ampere is one of seven SI base units, and is defined in terms of the force it produces between two, parallel, current-carrying conductors. It is incorrect to say that an ampere is 'defined' as a coulomb per second, although it is certainly 'equivalent' to a coulomb per second.The coulomb is a SI derived unit, and is defined in terms of the ampere and the second. In fact, it is a special name given to an ampere second.


What is an electrostatic force?

The electric potential energy of given configuration of charges is defined as the work which must be done against the Coulomb force to rearrange charges from infinite separation to this configuration (or the work done by the Coulomb force separating the charges from this configuration to infinity). For two point-like charges Q1 and Q2 at a distance r this work, and hence electric potential energy is equal to: E_mathrm{p,e} = frac{1}{{4piepsilon_0}}{{Q_1Q_2}over{r}} ============================================ Yes, yes, undoubtedly correct. But what is an electrostatic force ? Atraction between two opposite forces


What is electrostatic force?

The electric potential energy of given configuration of charges is defined as the work which must be done against the Coulomb force to rearrange charges from infinite separation to this configuration (or the work done by the Coulomb force separating the charges from this configuration to infinity). For two point-like charges Q1 and Q2 at a distance r this work, and hence electric potential energy is equal to: E_mathrm{p,e} = frac{1}{{4piepsilon_0}}{{Q_1Q_2}over{r}} ============================================ Yes, yes, undoubtedly correct. But what is an electrostatic force ? Atraction between two opposite forces


How would you calculate the amperage for a strobe circuit with only the known values of farads volts joules and coulombs?

Amps are coulombs per second, and there is no information on rates given here.