answersLogoWhite

0

4 moles or 160 g NaOH is required for one litre solution.

User Avatar

Wiki User

16y ago

What else can I help you with?

Continue Learning about Chemistry

How many moles of agno3 are needed to prepare 0.50 l of a 4.0 m solution?

Molarity = moles of solute/liters of solution or, for our purposes moles of solute = liters of solution * Molarity moles of AgNO3 = 0,50 liters * 4.0 M = 2.0 moles of AgNO3 needed --------------------------------------


How many moles of HNO3 are needed to prepare 5.0 liters of 2.0m soultion of HNO3?

Concentration of NaOH = 0.025 M = 0.025 Moles per Litre of SolutionVolume of Solution required = 5.00LWe can say therefore that:Number of Moles of NaOH needed to prepare the solution= Concentration of NaOH * Volume of Solution requiredTherefore:Number of Moles of NaOH needed to prepare the solution= 0.025M * 5.00L= 0.125molesFrom this we can say that 0.125 moles of NaOH are needed to prepare a 5.00 L solution with a concentration of 0.025M of NaOH.


How many moles of NaOH needed to prepare 300 mL of a 0.2 m solution of NaOH?

To find the moles of NaOH needed, use the formula: moles = concentration (molarity) x volume (liters). First, convert 300 mL to liters (0.3 L). Then, calculate: moles = 0.2 mol/L x 0.3 L = 0.06 moles. Therefore, 0.06 moles of NaOH are needed to prepare 300 mL of a 0.2 M solution.


How many liters are needed to make a 0.25 M solution with 0.50 moles moles of C12H22O11?

To find the volume of solution needed, you can use the formula: moles = Molarity × Volume. Rearranging the formula to solve for volume: Volume = Moles / Molarity. Plugging in the values, you get Volume = 0.50 moles / 0.25 M = 2 liters of solution needed.


How many liters of a 0.30M solution are needed to give 2.7 moles of solute?

Calc.:2.7 (mol) / 0.30 (mol/L) = 9.0 L

Related Questions

How many moles of agno3 are needed to prepare 0.50 l of a 4.0 m solution?

Molarity = moles of solute/liters of solution or, for our purposes moles of solute = liters of solution * Molarity moles of AgNO3 = 0,50 liters * 4.0 M = 2.0 moles of AgNO3 needed --------------------------------------


How many moles of HNO3 are needed to prepare 5.0 liters of 2.0m soultion of HNO3?

Concentration of NaOH = 0.025 M = 0.025 Moles per Litre of SolutionVolume of Solution required = 5.00LWe can say therefore that:Number of Moles of NaOH needed to prepare the solution= Concentration of NaOH * Volume of Solution requiredTherefore:Number of Moles of NaOH needed to prepare the solution= 0.025M * 5.00L= 0.125molesFrom this we can say that 0.125 moles of NaOH are needed to prepare a 5.00 L solution with a concentration of 0.025M of NaOH.


How many moles of potassium hydroxide are required to prepare 300 mL of 0.250 M solution?

To calculate the moles of potassium hydroxide needed, use the formula: moles = molarity * volume (in liters). First, convert 300 mL to liters (0.3 L). Then, moles = 0.250 mol/L * 0.3 L = 0.075 moles of potassium hydroxide needed to prepare the solution.


How many moles of NaOH needed to prepare 300 mL of a 0.2 m solution of NaOH?

To find the moles of NaOH needed, use the formula: moles = concentration (molarity) x volume (liters). First, convert 300 mL to liters (0.3 L). Then, calculate: moles = 0.2 mol/L x 0.3 L = 0.06 moles. Therefore, 0.06 moles of NaOH are needed to prepare 300 mL of a 0.2 M solution.


How many moles of copper sulfate are needed to make 2.50 Liters of 0.125 moles solution?

0.125 Molar solution! Molarity = moles of solute/Liters of solution Algebraically manipulated, Moles of copper sulfate = 2.50 Liters * 0.125 M = 0.313 moles copper sulfate needed ===========================


How many liters are needed to make a 0.25 M solution with 0.50 moles moles of C12H22O11?

To find the volume of solution needed, you can use the formula: moles = Molarity × Volume. Rearranging the formula to solve for volume: Volume = Moles / Molarity. Plugging in the values, you get Volume = 0.50 moles / 0.25 M = 2 liters of solution needed.


How many liters of a 0.30M solution are needed to give 2.7 moles of solute?

Calc.:2.7 (mol) / 0.30 (mol/L) = 9.0 L


How many liters would you need to get 0.5moles if you had 0.1m solution?

To find out how many liters of a 0.1 M solution are needed to obtain 0.5 moles, you can use the formula: [ \text{Molarity (M)} = \frac{\text{moles of solute}}{\text{liters of solution}} ] Rearranging this gives: [ \text{liters of solution} = \frac{\text{moles of solute}}{\text{Molarity (M)}} ] Substituting in the values: [ \text{liters of solution} = \frac{0.5 \text{ moles}}{0.1 \text{ M}} = 5 \text{ liters} ] Therefore, you would need 5 liters of a 0.1 M solution to obtain 0.5 moles.


What is the total number of moles of H2SO4 needed to prepare 5.0 liters of a 2.0 M solution of H2SO4?

To find the total number of moles needed, use the formula n = M x V, where n is the number of moles, M is the molarity, and V is the volume in liters. Thus, n = 2.0 mol/L x 5.0 L = 10 moles of H2SO4 are needed.


How many grams of solid KOH is necessary to prepare 220.0 ml of 0.500 M KOH solution?

Molarity = moles of solute/Liters of solution ( 220.0 ml = 0.220 Liters ) 0.500 M KOH = moles KOH/0.220 Liters = 0.110 moles KOH (56.108 grams/1 mole KOH) = 6.17 grams solid KOH needed


How many moles of kbr are present in 25ml of a 1.5 M solution?

To find the number of moles of KBr in the solution, first calculate the number of moles of KBr in the 25 mL solution using the given concentration and volume. $$moles = concentration \times volume$$ Then, multiply the moles by the molecular weight of KBr to get the mass of KBr in the solution if needed.


What is the molarity of a solution with 5mol solute in 4.5L solution?

Molarity = moles of solute/Liters of solution Molarity = 5 moles solute/4.5 Liters of solution = 1 M solution ==========