See the Related Question "How do you solve Ideal Gas Law problems?" to the left for the answer.
25 moles of sulfur dioxide contain 600 grams of oxygen. Each mole of SO2 contains 2 moles of oxygen, and the molar mass of O is 16 g/mol. So, 25 moles x 2 moles = 50 moles of O, which is 50 moles x 16 g/mol = 800 g of O.
One mole of sulfur reacts with 1.5 moles of oxygen to produce one mole of sulfur trioxide. So, with two moles of sulfur and three moles of oxygen, the limiting reactant is sulfur. Therefore, two moles of sulfur will produce two moles of sulfur trioxide.
This type of analysis would fall under the study of stoichiometry in chemistry. By examining the chemical formula of sulfur dioxide (SO2), you can determine the number of sulfur and oxygen atoms, and subsequently calculate their masses and number of moles based on the molar mass of sulfur and oxygen.
To find the mass of sulfur dioxide (SO₂) that contains the same number of molecules as 2 grams of ammonia (NH₃), you can use the concept of moles and the molar mass. **Find the number of moles of ammonia:** [ \text{Moles of NH₃} = \frac{\text{Mass of NH₃}}{\text{Molar mass of NH₃}} ] The molar mass of ammonia (NH₃) is approximately 17 grams/mol. **Use Avogadro's Number:** According to Avogadro's number, 1 mole of any substance contains the same number of entities (atoms, molecules, etc.), which is approximately (6.022 \times 10^{23}). **Find the number of molecules of ammonia:** [ \text{Number of NH₃ molecules} = \text{Moles of NH₃} \times (6.022 \times 10^{23}) ] **Convert to moles of sulfur dioxide:** Since the number of molecules is the same for both substances, the moles of sulfur dioxide (SO₂) would be the same as the moles of ammonia. [ \text{Moles of SO₂} = \text{Moles of NH₃} ] **Find the mass of sulfur dioxide:** [ \text{Mass of SO₂} = \text{Moles of SO₂} \times \text{Molar mass of SO₂} ] The molar mass of sulfur dioxide (SO₂) is approximately 64 grams/mol. Now, you can substitute the values into the equations to find the mass of sulfur dioxide.
There are 5 moles of sulfur in 5 moles of H2SO4, as there is 1 mole of sulfur in each mole of H2SO4.
Four moles of sulfur dioxide would consist of how many molecules?
800 g oxygen are needed.
There are approximately 9.65 x 10^23 molecules of sulfur dioxide in 1.60 moles of sulfur dioxide. This is because one mole of any substance contains Avogadro's number of molecules, which is 6.022 x 10^23.
The most straightforward reaction for the formation of SO3 from SO2 is 2 SO2 + O2 => 2 SO3. If this is the actual reaction for the formation, 3 moles of SO3 are formed from 3 moles of SO2.
To determine the number of molecules of sulfur dioxide in 72 g of the substance, we first need to calculate the number of moles of sulfur dioxide present. The molar mass of sulfur dioxide (SO2) is approximately 64 g/mol. Therefore, 72 g of sulfur dioxide is equal to 72 g / 64 g/mol = 1.125 moles. Next, we use Avogadro's number, which is 6.022 x 10^23 molecules/mol, to convert moles to molecules. Therefore, there are approximately 6.78 x 10^23 molecules of sulfur dioxide in 72 g of the substance.
25 moles of sulfur dioxide contain 600 grams of oxygen. Each mole of SO2 contains 2 moles of oxygen, and the molar mass of O is 16 g/mol. So, 25 moles x 2 moles = 50 moles of O, which is 50 moles x 16 g/mol = 800 g of O.
The balanced chemical equation shows that 1 mole of coke reacts with 1 mole of sulfur dioxide to produce 1 mole of carbon disulfide. Therefore, if 8.0 moles of coke react, then 8.0 moles of carbon disulfide will be generated.
Sulfur has relative atomic mass of 32 and oxygen have that of 16. The molar mass of sulfur dioxide is 64 grams per mole. Therefore there is approximately 0.58 moles (37.14/64) of sulfur dioxide in given weight.
One mole of sulfur reacts with 1.5 moles of oxygen to produce one mole of sulfur trioxide. So, with two moles of sulfur and three moles of oxygen, the limiting reactant is sulfur. Therefore, two moles of sulfur will produce two moles of sulfur trioxide.
This type of analysis would fall under the study of stoichiometry in chemistry. By examining the chemical formula of sulfur dioxide (SO2), you can determine the number of sulfur and oxygen atoms, and subsequently calculate their masses and number of moles based on the molar mass of sulfur and oxygen.
To find the mass of sulfur dioxide (SO₂) that contains the same number of molecules as 2 grams of ammonia (NH₃), you can use the concept of moles and the molar mass. **Find the number of moles of ammonia:** [ \text{Moles of NH₃} = \frac{\text{Mass of NH₃}}{\text{Molar mass of NH₃}} ] The molar mass of ammonia (NH₃) is approximately 17 grams/mol. **Use Avogadro's Number:** According to Avogadro's number, 1 mole of any substance contains the same number of entities (atoms, molecules, etc.), which is approximately (6.022 \times 10^{23}). **Find the number of molecules of ammonia:** [ \text{Number of NH₃ molecules} = \text{Moles of NH₃} \times (6.022 \times 10^{23}) ] **Convert to moles of sulfur dioxide:** Since the number of molecules is the same for both substances, the moles of sulfur dioxide (SO₂) would be the same as the moles of ammonia. [ \text{Moles of SO₂} = \text{Moles of NH₃} ] **Find the mass of sulfur dioxide:** [ \text{Mass of SO₂} = \text{Moles of SO₂} \times \text{Molar mass of SO₂} ] The molar mass of sulfur dioxide (SO₂) is approximately 64 grams/mol. Now, you can substitute the values into the equations to find the mass of sulfur dioxide.
There are 5 moles of sulfur in 5 moles of H2SO4, as there is 1 mole of sulfur in each mole of H2SO4.