For water vapours, 286 kJ/mol.
The energy released when water is condensed from water vapor is known as the heat of condensation. This process releases about 40.7 kJ of energy per mole of water condensed. To calculate the energy released when 6.0 g of water is condensed, you would first convert grams to moles and then use the molar heat of condensation to find the total energy released.
The energy released when 6 grams of water is condensed from water vapor is equal to the heat of vaporization of water. This is approximately 2260 joules per gram. So, for 6 grams of water, the total energy released would be around 13,560 joules.
The energy released when condensing water vapor is known as the heat of condensation. It takes 2260 Joules of energy to condense 1 gram of water vapor. So, for 6.0 grams of water vapor, the energy released would be 6.0 grams * 2260 Joules/gram = 13,560 Joules.
When hydrogen and oxygen gases react to produce water, 285.5 kJ of energy is released per mole of water formed. To calculate the energy released when 15.0g of water is produced, you first need to determine the number of moles of water produced, then multiply by 285.5 kJ/mol to find the total energy released.
Hfus of water is 333.55 (333.55j/g)(65.8g)=21947.59J 21947.59/1000= 21.947kJ I think
347 J/g.K or 83 cal are released.
The energy released when 6 g of water vapor condenses into liquid water is approximately 2260 J. This amount of energy is known as the heat of condensation and represents the heat given off when water vapor changes into liquid water.
The energy released during the condensation of water vapor can be calculated using the formula: Energy = mass x heat of vaporization. The heat of vaporization of water is approximately 2260 J/g. Therefore, the energy released when condensing 6.0g of water vapor would be around 6.0g x 2260 J/g = 13,560 J.
The amount of energy generated from freezing 2.5g of water can be calculated using the specific heat capacity of water and the heat of fusion for water. The energy released would be equal to the heat of fusion of water (334 J/g) multiplied by the mass of water (2.5g). By multiplying these values, you can determine the total energy released during the freezing process.
Cells regulate synthesis by controlling the activation of enzymes involved in metabolic pathways. This is done through feedback inhibition, where the end product of a pathway inhibits the enzyme responsible for its synthesis. By regulating when and how much of a certain product is produced, cells can conserve energy by only making what is necessary for their immediate needs.
4450 kJ of energy would be released.
Yes it can by the chemicals being released to boil water.