answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: How newton rephson method is better than bisection method?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Trigonometry

What is the advantages of secant method?

Advantages of secant method: 1. It converges at faster than a linear rate, so that it is more rapidly convergent than the bisection method. 2. It does not require use of the derivative of the function, something that is not available in a number of applications. 3. It requires only one function evaluation per iteration, as compared with Newton's method which requires two. Disadvantages of secant method: 1. It may not converge. 2. There is no guaranteed error bound for the computed iterates. 3. It is likely to have difficulty if f 0(α) = 0. This means the x-axis is tangent to the graph of y = f (x) at x = α. 4. Newton's method generalizes more easily to new methods for solving simultaneous systems of nonlinear equations.


Use the Bisection, Newton’s, and Secant Methods to find the solution of the equation x - cos x = 0 over the interval[0,pi/2] accurate to within error = 0.005, wherex is in radian. For Newton’s method, try initial guesses including x0 = 1?

Bisection Method: Begin with the interval [0, pi/2]. The midpoint of the interval is x1 = pi/4. Calculate the value of the function at x1: f(x1) = pi/4 - cos(pi/4). Since f(x1) > 0, the solution must be in the interval [0, pi/4]. Now consider the midpoint of this interval, x2 = pi/8. Calculate the value of the function at x2: f(x2) = pi/8 - cos(pi/8). Since f(x2) < 0, the solution must be in the interval [pi/8, pi/4]. Now consider the midpoint of this interval, x3 = 3pi/16. Calculate the value of the function at x3: f(x3) = 3pi/16 - cos(3pi/16). Since f(x3) > 0, the solution must be in the interval [pi/8, 3pi/16]. Continue this process, calculating the midpoint of the interval and the value of the function at the midpoint, until the difference between the lower and upper bounds of the interval is less than or equal to the error of 0.005. Newton’s Method: Try an initial guess of x0 = 1. Calculate the value of the function at x0: f(x0) = 1 - cos(1). Calculate the derivative of the function at x0: f'(x0) = 1 + sin(1). Calculate the next x-value using the Newton’s method formula: x1 = x0 - f(x0)/f'(x0) = 1 - (1 - cos(1))/(1 + sin(1)) = 0.6247. Calculate the value of the function at x1: f(x1) = 0.6247 - cos(0.6247). Calculate the derivative of the function at x1: f'(x1) = 1 + sin(0.6247). Calculate the next x-value using the Newton’s method formula: x2 = x1 - f(x1)/f'(x1) = 0.6247 - (0.6247 - cos(0.6247))/(1 + sin(0.6247)) = 0.739. Continue this process until the difference between two successive x-values is less than or equal to the error of 0.005. Secant Method: Start with two initial x-values, x0 = 0 and x1 = 1. Calculate the value of the function at x0 and x1: f(x0) = 0 - cos(0) = 0, f(x1) = 1 - cos(1). Calculate the next x-value using the Secant method formula: x2 = x1 - f(x1)(x1 - x0)/(f(x1) - f(x0)) = 1 - (1 - cos(1))(1 - 0)/(1 - cos(1) - 0) = 0.6247. Calculate the value of the function at x2: f(x2) = 0.6247 - cos(0.6247). Calculate the next x-value using the Secant method formula: x3 = x2 - f(x2)(x2 - x1)/(f(x2) - f(x1)) = 0.6247 - (0.6247 - cos(0.6247))(0.6247 - 1)/(0.6247 - cos(0.6247) - 1) = 0.7396. Continue this process until the difference between two successive x-values is less than or equal to the error of 0.005.


A 50 newton barge is supported by a two ropes one making 30 degree vertical and another 45 degree with the horizontal. What is the tension of the ropes?

36.6N and 25.9 N respectively.


What is the origin of trigonometry As in a person time period or area?

Trigonometry was probably developed for use in sailing as a navigation method used with astronomy.[2] The origins of trigonometry can be traced to the civilizations of ancient Egypt, Mesopotamia and the Indus Valley (India), more than 4000 years ago.[citation needed] The common practice of measuring angles in degrees, minutes and seconds comes from the Babylonian's base sixty system of numeration. The first recorded use of trigonometry came from the Hellenistic mathematician Hipparchus[1] circa 150 BC, who compiled a trigonometric table using the sine for solving triangles. Ptolemy further developed trigonometric calculations circa 100 AD. The ancient Sinhalese in Sri Lanka, when constructing reservoirs in the Anuradhapura kingdom, used trigonometry to calculate the gradient of the water flow. Archeological research also provides evidence of trigonometry used in other unique hydrological structures dating back to 4 BC.[citation needed] The Indian mathematician Aryabhata in 499, gave tables of half chords which are now known as sine tables, along with cosine tables. He used zya for sine, kotizya for cosine, and otkram zya for inverse sine, and also introduced the versine. Another Indian mathematician, Brahmagupta in 628, used an interpolation formula to compute values of sines, up to the second order of the Newton-Stirling interpolation formula. In the 10th century, the Persian mathematician and astronomer Abul Wáfa introduced the tangent function and improved methods of calculating trigonometry tables. He established the angle addition identities, e.g. sin (a + b), and discovered the sine formula for spherical geometry: : Also in the late 10th and early 11th centuries, the Egyptian astronomer Ibn Yunus performed many careful trigonometric calculations and demonstrated the formula : Persian mathematician Omar Khayyám (1048-1131) combined trigonometry and approximation theory to provide methods of solving algebraic equations by geometrical means. Khayyam solved the cubic equation x3 + 200x = 20x2 + 2000 and found a positive root of this cubic by considering the intersection of a rectangular hyperbola and a circle. An approximate numerical solution was then found by interpolation in trigonometric tables. Detailed methods for constructing a table of sines for any angle were given by the Indian mathematician Bhaskara in 1150, along with some sine and cosine formulae. Bhaskara also developed spherical trigonometry. The 13th century Persian mathematician Nasir al-Din Tusi, along with Bhaskara, was probably the first to treat trigonometry as a distinct mathematical discipline. Nasir al-Din Tusi in his Treatise on the Quadrilateral was the first to list the six distinct cases of a right angled triangle in spherical trigonometry. In the 14th century, Persian mathematician al-Kashi and Timurid mathematician Ulugh Beg (grandson of Timur) produced tables of trigonometric functions as part of their studies of astronomy. The mathematician Bartholemaeus Pitiscus published an influential work on trigonometry in 1595 which may have coined the word "trigonometry" itself. Hope that helps. :)


Related questions

Is newton rephson and successive bisection recursion or iteration?

They are iterative methods, but they can be implemented as recursive methods.


What is the defference between bisection method and newton method?

there are three variable are to find but in newton only one variable is taken at a time of a single iteration


Why it is advantageous to combine Newton Raphson method and Bisection method to find the root of an algebraic equation of single variable?

An improved root finding scheme is to combine the bisection and Newton-Raphson methods. The bisection method guarantees a root (or singularity) and is used to limit the changes in position estimated by the Newton-Raphson method when the linear assumption is poor. However, Newton-Raphson steps are taken in the nearly linear regime to speed convergence. In other words, if we know that we have a root bracketed between our two bounding points, we first consider the Newton-Raphson step. If that would predict a next point that is outside of our bracketed range, then we do a bisection step instead by choosing the midpoint of the range to be the next point. We then evaluate the function at the next point and, depending on the sign of that evaluation, replace one of the bounding points with the new point. This keeps the root bracketed, while allowing us to benefit from the speed of Newton-Raphson.


Disadvantages of the bisection method in numerical methods?

The main disadvantage of the bisection method for finding the root of an equation is that, compared to methods like the Newton-Raphson method and the Secant method, it requires a lot of work and a lot of iterations to get an answer with very small error, whilst a quarter of the same amount of work on the N-R method would give an answer with an error just as small.In other words compared to other methods, the bisection method takes a long time to get to a decent answer and this is it's biggest disadvantage.


How do you compute a square root?

Square roots are computed using the Babylonian method, calculators, Newton's method, or the Rough estimation method. * * * * * Or the Newton-Raphson method.


Where scientific method in applied?

newton


Who is better cam newton or terrelle pryor?

cam newton is better


What are advantages and disadvantage for Newton method?

Isaac newton created the white light compotation


What is Newton's method of approximate root?

5.6569


What is the advantages of secant method?

Advantages of secant method: 1. It converges at faster than a linear rate, so that it is more rapidly convergent than the bisection method. 2. It does not require use of the derivative of the function, something that is not available in a number of applications. 3. It requires only one function evaluation per iteration, as compared with Newton's method which requires two. Disadvantages of secant method: 1. It may not converge. 2. There is no guaranteed error bound for the computed iterates. 3. It is likely to have difficulty if f 0(α) = 0. This means the x-axis is tangent to the graph of y = f (x) at x = α. 4. Newton's method generalizes more easily to new methods for solving simultaneous systems of nonlinear equations.


Who is better Cam Newton or Sam Bradford?

cam newton he has won more awards


He invented a new method of mathematical calculations called calculus?

Newton and Leibniz developed the calculus.