yes
In a steam nozzle, pressure decreases due to the conversion of enthalpy into kinetic energy as steam expands. As the high-pressure steam passes through the nozzle, its velocity increases while its pressure and temperature drop. This process is governed by the principles of thermodynamics, specifically the principles of conservation of mass and energy. The rapid expansion of steam results in a lower pressure at the nozzle exit compared to the inlet.
When steam passes through a nozzle, it undergoes adiabatic expansion due to the decrease in pressure. This expansion causes the steam to increase in velocity as it exits the nozzle, converting some of its internal energy into kinetic energy. The increase in velocity results in a decrease in pressure and an increase in velocity, which can be harnessed in devices such as turbines.
Friction in a steam nozzle can result in energy losses, reducing the efficiency of the nozzle. Frictional forces can cause pressure drops and decrease the velocity of the steam flow, impacting the overall performance of the system. Proper design and maintenance are essential to minimize frictional losses in steam nozzles.
Steam turbine nozzle clearance is the total energy content available in steam. This is through a valve.
A NOZZLE IS A DUCT WHICH CONVERT HEAT ENERGY INTO KINETIC ENERGY.IT INCREASES VELOCITY OF FLUID PASSING THROUGH IT ,AT THE EXPENCE OF PRESSURE. STEAM EXPANDS IN NOZZLE FOLLOW RANKINE CYCLE.FLOW THROUGH NOZZLE IS ISENTROPIC. mritunjay04@gmail.com
It sends hot gases from the combustion chamber to the 1st stage turbine blades at the correct angle and speed
In a single stage steam turbine the steam is run through a nozzle to give it maximum velocity, thus the blades move at very high speeds, impractical for some applications, and only some of the energy is used, about 85-90%. In multi-stage or compound turbines the steam goes through a nozzle to increase its velocity, then after going through a set of blades, it is run through another nozzle to bring the steam back up to the correct velocity. After multiple stages there is no longer enough pressure left to up the velocity of the steam. This method increases the efficiency of the turbine and also decreases wear on the components caused by the high speed of a single stage.
1) convergent nozzle 2)divergent nozzle
Nozzles are designed to increase the steam velocity.
If the steam pressure is 25 bars the condensate pressure is at most 25 bars. Typically it is slightly less due to friction of the fluid passing through the steam traps. As the condensate approaches the condensate tank, where it is normally vented to atmosphere, the pressure decreases in the system to near atmospheric.
It makes it spin around because on the steam it has a lot of pressure flowing out it is an example of a wind
Bottle rockets require water to create steam pressure within the bottle. This pressure builds up when the water inside is heated by the ignited propellant, causing the bottle to launch upwards. The steam escaping through the nozzle propels the bottle rocket into the air.