The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
As frequency increases, the wavelength decreases for waves traveling at the same speed. This relationship is defined by the formula: wavelength = speed of light / frequency. So, if the frequency increases, the wavelength must decrease to maintain a constant speed.
A wave traveling at a constant speed will have its frequency remain the same regardless of the change in wavelength. The wavelength and frequency of a wave are inversely proportional, meaning if the wavelength is reduced by a factor of 3, the frequency would increase by a factor of 3 to maintain a constant speed.
Velocity of wave = Frequency X Wavelength So if Velocity of the wave is kept constant, then Frequency of the wave is inversely proportional to it's wavelength i.e increase in frequency means decreases in Wavelength.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
Yes, you can change the wavelength of waves in a ripple tank by adjusting the frequency of the wave generator. Increasing the frequency will decrease the wavelength, while decreasing the frequency will increase the wavelength of the waves produced in the tank.
Speed is (Length/Time). Wavelength is (Length), and Frequency is (1/Time).Speed = (Wavelength)*(Frequency). With a constant speed, Wavelength and Frequency are inversely proportional to each other. So if one increases, the other decreases.
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.
If you shorten the wavelength of a wave while keeping the amplitude constant, the frequency of the wave will increase. This is because wavelength and frequency are inversely proportional in a wave (frequency = speed of wave / wavelength).
The speed of a wave is equal to the wavelength divided by the frequency (speed = wavelength/frequency). So if the frequency of the wave increases, the wavelength will decrease.