urgently needed
Measure the voltage appearing across each resistor. If they are identical, and equal to the supply voltage, then the resistors are in parallel.
It depends on the values of the individual resistors. But if each resistor is identical, then the total resistance will be one-quarter that of an individual resistor.
(R1 x R2) / (R1 + R2) for 2 load parallel circuits, soo... 133.3 repeating Ohms.
If you have three 100 ohm resistors, and you want an equivalent resistor of 66.7 ohms, put two resistors in series, and then parallel the third resistor across the first two. Resistors in series: R1 + R2 Resistors in parallel: R1 * R2 / (R1 + R2) This example: Two 100 ohm resistors in series: 100 + 100 = 200 A 100 ohm resistor in parallel with a 200 ohm resistor: 100 * 200 / (100 + 200) = 66.7
It represents that two resistors are connected in parallel.
Make one resistor parallel with 5 resistors which are in series.
In parallel resistors, the voltage across each resistor is the same, but the total voltage across all resistors may vary.
30 ohms.
Resistors are in series if they are connected end-to-end, creating one path for current to flow. Resistors are in parallel if they are connected side by side, providing multiple paths for current to flow. You can determine if resistors are in series or parallel by examining how they are connected in a circuit.
When resistors of the same value are wired in parallel, the total equivalent resistance (ie the value of one resistor that acts identically to the group of parallel resistors) is equal to the value of the resistors divided by the number of resistors. For example, two 10 ohm resistors in parallel give an equivalent resistance of 10/2=5Ohms. Three 60 ohm resistors in parallel give a total equivalent resistance of 60/3 = 20Ohms. In your case, four 200 Ohm resistors in parallel give 200/4 = 50 Ohms total.
The resistors should be connected in parallel .
We have n identical resistors, call them R1, R2 etc up to Rn. All have resistance R. Resistance of the whole circuit = 1/(1/R1 + 1/R2 + ... + 1/Rn) = 1/(n*(1/R)) = 1/(n/R) = R/n So it's the resistance of one resistor, divided by the number of resistors.