See discuss.
resistance = volt / current . 440 volt across a parallel circuit means the same 440 volt across both resistance s. hence resistance r = volt / current . 440 / 20 amp = 27.5 ohms total resistance
There will be no effect on the voltage. That is the effective voltage will be only 12 volt. But there will be increase of current.
If a 9.0 volt battery is connected to a 4.0-ohm and 5.0-ohm resistor connected in series, the current in the circuit is 1.0 amperes. If a 9.0 volt battery is connected to a 4.0-ohm and 5.0-ohm resistor connected in parallel, the current in the circuit is 0.5 amperes.
Always voltage constant in parallel circuit if you look your house wiring all are in parallel therefore 220 volt present in every house but current is different
1 amp. formula E=IR
2 amps
Two 6-ohm resistors in parallel have a net effective resistance of 3 ohms.With 3 ohms connected across a 12-volt supply, the current is 12/3 = 4 amperes.
The current in a 220 volt circuit depends on the resistance of the load connected to it. Ohm's Law (I = V/R) states that current (I) is equal to voltage (V) divided by resistance (R). So, the current will vary based on the resistance of the circuit.
Assuming you mean the 4 lamps are in parallel with each other: the total voltage drop across each lamp is still 12V. As we know that V= IR (Voltage = I Current times Resistance) 12 = 1 x R so Resistance = 12 Ohms for each lamp.
9 volts. They are in parallel, so the voltage remains the same. More current is available however.
by a volt meter / ameter
If a lamp burns out in parallel circuit, the other two lamps will continue to glow. If a lamp burns out in the series circuit, the other two lamps will also go out. If 3 lamps are in one series circuit, and one of them goes out, the loop is disconnected.