answersLogoWhite

0


Best Answer

P = IV V = P/I V = 5.00 W / 5.0 A V = 1.0 V Therefore 1.0 V is consumed by the resister

User Avatar

Wiki User

14y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

11y ago

Power dissipated =(I)I*R

=5*5(30)

=750 watts

This answer is:
User Avatar

User Avatar

Wiki User

14y ago

P = V * I = 5.5 * 3m = 16.5mW

This answer is:
User Avatar

User Avatar

Wiki User

8y ago

500 V

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: If a resistor has 5.5 V across it and 3 mA through it what is the power dissipation.?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

At what level will typical resistors burn out?

A typical resistor will burn out when it dissipates power in excess of double its power dissipation rating for an extended period of time. The power dissipated by a resistor is equal to I2R or E2/R, where E = the voltage across the resistor I = the current through the resistor R = the resistance of the resistor


How measure the value of resister?

To measure the value of a resistor, apply a voltage and measure the voltage across the resistor and the current through the resistor. Use Ohm's law: Resistance equals Voltage divided by Current. Start with a small voltage and increase gradually until a reading is obtained, but be careful that the power dissipation (watts = volts times amperes) of the resistor is not exceeded. Simpler solution: Use an ohmeter.


If you know the voltage applied to a resistor and the value of the resistor how would you determine the power dissipated in the resistor.?

Power dissipation of a resistor or any load is the amount of power (in watts) that is converted to heat, light, or other form of energy. In a resistor, power dissipation is defined by Ohm's law P = I^2 * R Power dissipated equals current through the resistor squared times the resistance in ohms. Since the power is converted to heat, a resistor has a maximum dissipation rating set by the manufacturer, above which the resistor will be damaged.


What is the current through the 150 ohm resistor?

It depends on the voltage applied across it. But the maximum current is limited by the power-rating of the resistor (power divided by the square of the voltage).


Is voltage established through a resistor or across a resistor?

Current = charge (electrons) flowing through a resistor.Voltage = energy lost across a resistor.Power = energy lost across a resistor per second.So yes you are correct. Current is established through a component, while voltage and power are established across a component.Answer'Voltage' is a synonym for 'potential difference'. As the name implies, voltage describes the difference in potential between (or 'across') two different points. So voltage is applied ACROSS a resistor.Further to the original answer. voltage is NOT equivalent to 'the energy lost across a resistor', and power is NOT 'established across a resistor' (power is simply a 'rate', nothing more)!

Related questions

At what level will typical resistors burn out?

A typical resistor will burn out when it dissipates power in excess of double its power dissipation rating for an extended period of time. The power dissipated by a resistor is equal to I2R or E2/R, where E = the voltage across the resistor I = the current through the resistor R = the resistance of the resistor


How do you explain the MOSFET power dissipation?

It will make more sense if you first study the construction of MOSFET. It has three terminals, Gate (G), Source (S), and Drain (D). G is insulated from the S and D. Between S and D is a variable resistor, whose resistance depends on the voltage applied across G and S. Since SD is basically a resistor, you have power dissipation when a voltage is applied across S and D. Power dissipation = Vds * Ids.


Why resistor size does not varies with its value?

A: A resistor size is determined by the usage or its power dissipation. the bigger the size the more power it can dissipate due to the extra surface. SIZE is a function of power dissipation and has nothing to do with its value


What will happen when a 0.25 watt resistor with the resistance of 1 ohm is placed across a 12 volt car battery?

The power dissipated by a 1-ohm 1/4-watt resistor reaches its rated value when the voltage across it is 1/2 volt. Any more than that, and the resistor's power dissipation rating is exceeded. 12 volts across 1 ohm produces a current of E/R = 12 amperes (as long as the battery can deliver it), and a power dissipation of E2/R = 144 watts. The resistor will smoke, glow, and possibly pop, as it fails catastrophically.


Is the heat loss and current of a resistor affected by being in a parallel circuit or can you just calculate it the same as in series?

The heat generated by any particular resistor depends (at least electrically) solely on the power it dissipates. Power dissipation in a resistor is equal to current squared times resistance, and the current through the resistor is equal to the voltage across it divided by the resistance. If we take a 10 ohm resistor ('your resistor') and put it in a series circuit such that there is 10 volts across your resistor, the current through it will be 1 ampere (10/10=1). the power dissipated will be 10 watts (1^2 * 10=10). If we put your resistor in a parallel circuit that also puts 10 volts across it, then the current and power will be the same. Your resistor does not know or care where the voltage came from. From this point of view, once you get down to the voltage across the resistor, it does not matter what type of circuit it is in. On the other hand, for any given power supply voltage, then the type of circuit and the value of external components certainly does affect the terminal voltage and thus the current through as well as the power dissipated by the resistor. In a parallel circuit, the voltage across your resistor remains basically the same no matter what resistance you put in parallel with it (unless you overload the power supply or the power supply has high internal resistance). In this case, the voltage across the resistor is the same as the power supply, current is I=E/R, R being that resistor only, and power is P=I^2 * R. In a series circuit the current through the resistors is I=E/R, R being the total resistance (including the other resistor(s)). The power dissipation in your resistor will then be P=I^2 * R, I being the series current we just calculated, and R being your resistor only. Since the other resistors affect the current, and since the current is the same no matter where you measure in a series circuit, then the voltage across your resistor and thus the power dissipation will be affected. The voltage across your resistor will be E=I*R, I being the series current we just calculated, and R being your resistor only. So, while the calculation for power dissipated in a particular resistor does not change relative to what type of circuit it is in, the calculation to arrive at the voltage across the resistor and/or the current through it (which you will then need to calculate power) does. Keep in mind there are other mechanical parameters that influence the actual case temperature of the resistor. Physical size of the case, composition, and airflow velocity, if any, will alter the case-to-ambient thermal conductivity. Ambient temperature will also be a factor in the final temperature.


How do you find power generated in a resistor?

The power generated in a resistor is converted into heat. and that can be power which is converted into heat is the product of the voltage across the resistor and, current passing through the resistor. or the product of square of the current and the resistance offered by the resistor.


What is the power dissipation for a100Kohm resistor with ten volts going through it?

One milliwatt. Voltage is amperes times resistance, and watts is voltage times current.


How measure the value of resister?

To measure the value of a resistor, apply a voltage and measure the voltage across the resistor and the current through the resistor. Use Ohm's law: Resistance equals Voltage divided by Current. Start with a small voltage and increase gradually until a reading is obtained, but be careful that the power dissipation (watts = volts times amperes) of the resistor is not exceeded. Simpler solution: Use an ohmeter.


If you know the voltage applied to a resistor and the value of the resistor how would you determine the power dissipated in the resistor.?

Power dissipation of a resistor or any load is the amount of power (in watts) that is converted to heat, light, or other form of energy. In a resistor, power dissipation is defined by Ohm's law P = I^2 * R Power dissipated equals current through the resistor squared times the resistance in ohms. Since the power is converted to heat, a resistor has a maximum dissipation rating set by the manufacturer, above which the resistor will be damaged.


What is the current through the 150 ohm resistor?

It depends on the voltage applied across it. But the maximum current is limited by the power-rating of the resistor (power divided by the square of the voltage).


What are the losses in resistors?

The power lost in a resistor is(the current through the resistor) times (the resistance) watts. That's the same thing as(the voltage across the resistor)/(the resistance)watts.


Is voltage established through a resistor or across a resistor?

Current = charge (electrons) flowing through a resistor.Voltage = energy lost across a resistor.Power = energy lost across a resistor per second.So yes you are correct. Current is established through a component, while voltage and power are established across a component.Answer'Voltage' is a synonym for 'potential difference'. As the name implies, voltage describes the difference in potential between (or 'across') two different points. So voltage is applied ACROSS a resistor.Further to the original answer. voltage is NOT equivalent to 'the energy lost across a resistor', and power is NOT 'established across a resistor' (power is simply a 'rate', nothing more)!