No.
The wavelength is the spatial period of the wave and it can be measured between any 2 points with the same phase. The maximum wavelength in the spectrum is 502 nm.
The maximum wavelength at which electromagnetic radiation can occur is infinite.
Because red light has minimum frequency and thus it has maximum wavelength.
The maximum wavelength for cibacron Yellow FN2R dye is typically around 420-430 nm.
The wavelength with the maximum absorbance corresponds to the peak absorption of the compound being analyzed, providing the most accurate and precise measurement. By measuring absorbance at the maximum wavelength, we can ensure the highest sensitivity and specificity in detecting and quantifying the compound of interest.
The wavelength of maximum intensity in sunlight is around 500 nm, which is in the green portion of the visible spectrum. This wavelength corresponds to the peak of the solar radiation spectrum and is where the sun emits the most energy.
Germanium has a maximum spectral response at around 1.8 µm wavelength, while silicon's maximum spectral response is at around 1.1 µm wavelength.
The equation for the wavelength of maximum intensity (peak wavelength) can be calculated using Wien's Law, which is λmax = b / T, where λmax is the peak wavelength, b is a constant (2.897 x 10^-3 m*K), and T is the temperature in Kelvin.
After reaching maximum absorbance at a certain wavelength, further increase in wavelength leads to decreased absorbance because the molecules are not absorbing light at those wavelengths as efficiently. This decrease may be attributed to a shift in the electronic energy levels of the molecules, causing them to absorb less light as the wavelength increases beyond the maximum.
The Lyman series corresponds to electronic transitions in hydrogen where the electron falls to the n=1 energy level. The maximum wavelength occurs when the transition is from n=2 (the first level above n=1), yielding a wavelength of approximately 121.6 nm. The minimum wavelength occurs when the transition is from n approaching infinity, resulting in a wavelength of 0.1 nm (or less). Therefore, the ratio of maximum to minimum wavelength for the Lyman series is about 1216:0.1 or 12160:1.
Half of a wavelength is the distance between two points on a wave where the oscillation is at the midpoint between its maximum and minimum amplitudes.
The wavelength of maximum absorbence relates to the color, because the only color that is not absorbed will be the color of the item. For example, plants are green because they absorb red and blue light, and reflect green light.