Length is a characterization of spatial dimension, i.e. distance. It is a completely different physical concept from energy.
The kinetic energy of an object is directly proportional to its velocity. Therefore, the length of an object does not directly affect its kinetic energy. However, a longer object may have a greater potential for higher velocity, which in turn could increase its kinetic energy if it is in motion.
Temperature is not a factor in either kinetic or potential energy. Kinetic energy is dependent on an object's velocity, while potential energy is related to an object's position in a force field. Temperature does not directly impact these forms of energy.
A pendulum swings back and forth with a period based on its length. When it is pointing directly down, moving horizontally with maximum speed, there is no potential energy; all the energy is kinetic. When it is maximally away from this position it has stopped and so has no kinetic energy; all the energy is potential. Thus at any one time there is the same amount of energy in a swinging pendulum but depending on where it is in its arc of motion there will be different amounts of kinetic and potential energy.
The traditional definitions are kinetic energy (due to motion) and potential energy (due to the relative location within a gravity field).There is really only one type and it is the sum of the gravitational potential energy and the kinetic energy. Mechanical energy = (Mass)((Gravitational acceleration)(Height)+(1/2)(Velocity)²)
One example of potential energy is the energy stored in a stretched rubber band. This energy is potential because it is not being actively used at the moment but has the potential to do work when released.
-- pouring beer out of a bottle into a glass-- sledding or skiing down a snow-covered hillside-- plopping effervescent antacid tablets into a glass of water-- coasting down a hill on your bicycle-- everything a roller coaster does after it passes the top of the first hill-- rolling your car down the hill to the filling station after running out of gasAn object in free fall - if it is falling down, its potential energy decreases, its kinetic energy increases.
Both a joule is a measurement unit of energy. Like centimeters measures both length and width joules are aunit to measure any type of energy
there is a lot of potential energy right before a roller coaster decreases in elevation. potential energy is at its highest on a roller coaster when the roller coaster is at its highest point. when it drops down it uses kinetic energy.
At the top of the slide, the child has a bunch of potential energy. Potential energy becomes converted to kinetic energy as the child accelerates down the slide. At the bottom of the slide, your science teacher will say that all potential energy is converted to kinetic.If your looking to be more technical, some kinetic energy will become heat along the length of the slide via friction. At the end of the slide, the child has to stop right? When the child lands on his feet, or face, the inelastic collision between his feet or face and the sand would produce more heat from kinetic energy. Then he will have neither potential nor kinetic energy, the heat he created would be dissipated into the air, sand, and slide as if everything is back to normal. But he might have some cuts and bruises if he did slide down face first.
The energy transfer in a drawn longbow involves the conversion of potential energy stored in the bowstring as it is pulled back into kinetic energy as the arrow is released. This kinetic energy propels the arrow forward with force and velocity. The efficiency of the energy transfer depends on factors such as the draw weight of the bow, the draw length, and the design of the bow.
The potential energy of a spring is defined by this equation: U=.5kx2 U= potential energy (in joules) k= the spring constant x= the displacement of the spring from equilibrium. (the amount that the spring is stretched or compressed) This equation tells us that as a spring is compressed by a distance x, the potential energy increases proportionately to x2
If you know the initial height and the length of the pendulum, then you have no use for the mass or the velocity. You already have the radius of a circle, and an arc for which you know the height of both ends. You can easily calculate the arc-length from these. And by the way . . . it'll be the same regardless of the mass or the max velocity. They don't matter.