If you know the initial height and the length of the pendulum, then you have no
use for the mass or the velocity. You already have the radius of a circle, and an arc
for which you know the height of both ends. You can easily calculate the arc-length
from these.
And by the way . . . it'll be the same regardless of the mass or the max velocity.
They don't matter.
The solution to the ballistic pendulum problem involves using the conservation of momentum and energy principles to calculate the initial velocity of a projectile based on the pendulum's swing height.
The height attained by an object projected up is directly proportional to the square of its initial velocity. So, if an object with initial velocity v attains a height h, then an object with initial velocity 2v will attain a height of 4 times h.
As the pendulum swings, the total energy (kinetic + potential) remains constant if we ignore friction. The maximum total energy of the pendulum is determined by the initial conditions such as the height from which it is released and the velocity. The higher the release point and the greater the initial velocity, the higher the maximum total energy of the pendulum.
To find the initial velocity of the kick, you can use the equation for projectile motion. The maximum height reached by the football is related to the initial vertical velocity component. By using trigonometric functions, you can determine the initial vertical velocity component and then calculate the initial velocity of the kick.
To determine the maximum height reached by an object launched with a given initial velocity, you can use the formula for projectile motion. The maximum height is reached when the vertical velocity of the object becomes zero. This can be calculated using the equation: Maximum height (initial velocity squared) / (2 acceleration due to gravity) By plugging in the values of the initial velocity and the acceleration due to gravity (which is approximately 9.81 m/s2 on Earth), you can find the maximum height reached by the object.
The solution to the ballistic pendulum problem involves using the conservation of momentum and energy principles to calculate the initial velocity of a projectile based on the pendulum's swing height.
The height attained by an object projected up is directly proportional to the square of its initial velocity. So, if an object with initial velocity v attains a height h, then an object with initial velocity 2v will attain a height of 4 times h.
As the pendulum swings, the total energy (kinetic + potential) remains constant if we ignore friction. The maximum total energy of the pendulum is determined by the initial conditions such as the height from which it is released and the velocity. The higher the release point and the greater the initial velocity, the higher the maximum total energy of the pendulum.
height=acceletation(t^2) + velocity(t) + initial height take (T final - T initial) /2 and place it in for time and there you go
To find the initial velocity of the kick, you can use the equation for projectile motion. The maximum height reached by the football is related to the initial vertical velocity component. By using trigonometric functions, you can determine the initial vertical velocity component and then calculate the initial velocity of the kick.
To determine the maximum height reached by an object launched with a given initial velocity, you can use the formula for projectile motion. The maximum height is reached when the vertical velocity of the object becomes zero. This can be calculated using the equation: Maximum height (initial velocity squared) / (2 acceleration due to gravity) By plugging in the values of the initial velocity and the acceleration due to gravity (which is approximately 9.81 m/s2 on Earth), you can find the maximum height reached by the object.
Increasing the initial velocity of a projectile will increase both its range and height. Higher initial velocity means the projectile will travel further before hitting the ground, resulting in greater range. Additionally, the increased speed helps the projectile reach a higher peak height before it begins to descend back down.
Ignoring air resistance, I get this formula:Maximum height of a vertically-launched object = 1.5 square of initial speed/GI could be wrong. In that case, the unused portion of my fee will be cheerfully refunded.
The height from which an object is dropped does not affect its average velocity. Average velocity depends on the overall displacement and time taken to achieve that displacement, regardless of the initial height of the object.
To find the mass of the pendulum, we need more information such as the height of the highest point and the length of the pendulum. With the given information, we cannot determine the mass of the pendulum. The mass of the pendulum depends on various factors including its potential energy, velocity, and dimensions.
The maximum height attained by the body can be calculated using the formula: height = (initial velocity)^2 / (2 * acceleration due to gravity). Since the velocity is reduced to half in one second, we can calculate the initial velocity using the fact that the acceleration due to gravity is -9.81 m/s^2. Then, we can plug this initial velocity into the formula to find the maximum height reached.
Get the value of initial velocity. Get the angle of projection. Break initial velocity into components along x and y axis. Apply the equation of motion .