Ignoring air resistance, I get this formula:
Maximum height of a vertically-launched object = 1.5 square of initial speed/G
I could be wrong. In that case, the unused portion of my fee will be cheerfully refunded.
To find the initial velocity of the kick, you can use the equation for projectile motion. The maximum height reached by the football is related to the initial vertical velocity component. By using trigonometric functions, you can determine the initial vertical velocity component and then calculate the initial velocity of the kick.
To determine the maximum height reached by an object launched with a given initial velocity, you can use the formula for projectile motion. The maximum height is reached when the vertical velocity of the object becomes zero. This can be calculated using the equation: Maximum height (initial velocity squared) / (2 acceleration due to gravity) By plugging in the values of the initial velocity and the acceleration due to gravity (which is approximately 9.81 m/s2 on Earth), you can find the maximum height reached by the object.
In a car the maximum acceleration (deceleration) caused by breaks is about 1 g. Thus the faster the initial speed, then the greater the time AND distance needed to come to a stop will be required.
The angle of projection affects the maximum height by determining the vertical and horizontal components of the initial velocity. At 90 degrees (vertical), all the initial velocity is vertical which results in maximum height. As the angle decreases from 90 degrees, the vertical component decreases, leading to a lower maximum height.
To determine the maximum height reached by a projectile, you can use the formula: maximum height (initial vertical velocity)2 / (2 acceleration due to gravity). This formula calculates the height based on the initial vertical velocity of the projectile and the acceleration due to gravity.
To find the initial velocity of the kick, you can use the equation for projectile motion. The maximum height reached by the football is related to the initial vertical velocity component. By using trigonometric functions, you can determine the initial vertical velocity component and then calculate the initial velocity of the kick.
To determine the maximum height reached by an object launched with a given initial velocity, you can use the formula for projectile motion. The maximum height is reached when the vertical velocity of the object becomes zero. This can be calculated using the equation: Maximum height (initial velocity squared) / (2 acceleration due to gravity) By plugging in the values of the initial velocity and the acceleration due to gravity (which is approximately 9.81 m/s2 on Earth), you can find the maximum height reached by the object.
In a car the maximum acceleration (deceleration) caused by breaks is about 1 g. Thus the faster the initial speed, then the greater the time AND distance needed to come to a stop will be required.
f = (mv^2)/r therefore the longer the length (ie. r) then the smaller the velocity, if the force is assumed to be constant.
height=acceletation(t^2) + velocity(t) + initial height take (T final - T initial) /2 and place it in for time and there you go
When the substrate concentration is equal to the Michaelis constant (Km), the initial velocity of the enzyme-catalyzed reaction will be half of the maximum velocity (Vmax) of the reaction. At Km, half of the enzyme active sites are filled with substrate, leading to half of maximum velocity being reached.
The angle of projection affects the maximum height by determining the vertical and horizontal components of the initial velocity. At 90 degrees (vertical), all the initial velocity is vertical which results in maximum height. As the angle decreases from 90 degrees, the vertical component decreases, leading to a lower maximum height.
To determine the maximum height reached by a projectile, you can use the formula: maximum height (initial vertical velocity)2 / (2 acceleration due to gravity). This formula calculates the height based on the initial vertical velocity of the projectile and the acceleration due to gravity.
The maximum height attained by the body can be calculated using the formula: height = (initial velocity)^2 / (2 * acceleration due to gravity). Since the velocity is reduced to half in one second, we can calculate the initial velocity using the fact that the acceleration due to gravity is -9.81 m/s^2. Then, we can plug this initial velocity into the formula to find the maximum height reached.
If the initial velocity is 50 meters per second and the launch angle is 15 degrees what is the maximum height? Explain.
The velocity of a projectile at its maximum height is zero. This is because at the highest point of the projectile's trajectory, all of its initial kinetic energy has been converted into potential energy, causing the velocity to momentarily become zero.
The time taken by the ball to reach the maximum height is 1 second. The maximum height reached by the ball is 36 meters.