answersLogoWhite

0


Best Answer
Conservation of Momentum:

The total momentum in a closed or isolated system remains constant. If the two trains are moving as one after the collision, and were the same mass M each, the total momentum before and after the collision would be the same, ccording to the law. Before the collision, the momentum (velocity times mass) was 10 x M units (one train) which must now be the same but applied to two trains (2M) moving as one body. The Conservation of Momentum rule, will tell you that the new moving body, being twice the mass, would be moving half the velocity to conserve the momentum from before the collision.

User Avatar

Wiki User

9y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Suppose a train car in moving down the track at 10ms hits another train car that is not moving explain how momentum is conserved after the collision?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

Need an explanation why kinetic energy is always conserved during elastic collision what is meant by conserved?

In this context "conserved" means the total kinetic energy of all the objects is the same after the collision as before the collision. Note, the TOTAL is the same but the individual kinetic energies of each object may be different before and after. When two or more objects are about to collide they have a certain total kinetic energy. It is common that during the collision some of the kinetic energy is transformed into heat. So after the collision the total kinetic energy is less then before the collision. This is a non-elastic collision. There are some collisions, however, in which none of the kinetic energy is changed to heat. These are called ELASTIC collisions. So the total kinetic energy doesn't change, or is "conserved". There is another possible non-elastic collision. If during the collision there is an explosion, then its possible for the objects to have a larger total kinetic energy after the collision as they aquire some of the explosive energy. Finally note, that in all collisions the TOTAL vector momentum is the same just before and just after the collision. So in a collision momentum is always conserved.


When a moving object with momentum collides with another moving object with momentum what formula do I use?

If the two bodies form a closed and isolated system (that is no other external forces act on the system apart from the forces that the bodies exert on each other and no mass is allowed to enter or leave the system), the principle of conservation of momentum SHOULD be used. Remember: As long as the condition in the brackets above hold, the principle of conservation of momentum holds. Next, depending on the nature of the collision, another conservation law can be used. If the collision is perfectly elastic, then kinetic energy is conserved. Note that although kinetic energy is not always conserved, TOTAL energy is ALWAYS conserved. You could still apply the principle of conservation of energy for an inelastic collision provided you knew the amount of energy converted to other forms of energy.


Conservation of linear momentum exp?

Linear momentum is mass times velocity. For a single point object, momentum is conserved, because the object will continue to move at a constant velocity. Nor will its mass change either. For a group of objects, too: When momentum is transferred, for example during a collision, any momentum lost by one object is gained by another. The total momentum remains constant.


Which can be described as in an isolated system momentum is always conserved?

Briefly, the only way for an object to change its momentum is by transferring momentum to another object - in other words, the other object will receive a change in momentum in the opposite direction.


How is momentum conserved in a vehicle collision?

That simply means that the total momentum before and after the crash is the same. Please bear in mind that momentum is a vector quantity. Thus, for example, one car moving at 20 m/s (that's 72 km/hour) north, and another car (same mass) that moves at 20 m/s south have a total momentum of zero, because of the way vectors are added.

Related questions

Suppose a train car moving down a track at 10 ms hits another train car that is not moving Explain how momentum is conserved after the collision?

Suppose that 1st car is X-car and the 2nd car is Y-car. Answer: After the collision, car X is no linger moving, but car Y is moving.


What happens when another object collides with another object?

Newton's Third Law is closely related to Conservation of Momentum. When objects collide, whether the collision is elastic or not, momentum is conserved. (An elastic collision is one in which mechanical energy is conserved. In an elastic collision, after the collision, the objects go away at the same relative speed at which they approached before the collision.)


Why is the momentum of a roller skater is not conserved?

The situation is not quite clear. Total momentum is always conserved, but momentum can be transferred from one object to another.


Need an explanation why kinetic energy is always conserved during elastic collision what is meant by conserved?

In this context "conserved" means the total kinetic energy of all the objects is the same after the collision as before the collision. Note, the TOTAL is the same but the individual kinetic energies of each object may be different before and after. When two or more objects are about to collide they have a certain total kinetic energy. It is common that during the collision some of the kinetic energy is transformed into heat. So after the collision the total kinetic energy is less then before the collision. This is a non-elastic collision. There are some collisions, however, in which none of the kinetic energy is changed to heat. These are called ELASTIC collisions. So the total kinetic energy doesn't change, or is "conserved". There is another possible non-elastic collision. If during the collision there is an explosion, then its possible for the objects to have a larger total kinetic energy after the collision as they aquire some of the explosive energy. Finally note, that in all collisions the TOTAL vector momentum is the same just before and just after the collision. So in a collision momentum is always conserved.


When a moving object with momentum collides with another moving object with momentum what formula do I use?

If the two bodies form a closed and isolated system (that is no other external forces act on the system apart from the forces that the bodies exert on each other and no mass is allowed to enter or leave the system), the principle of conservation of momentum SHOULD be used. Remember: As long as the condition in the brackets above hold, the principle of conservation of momentum holds. Next, depending on the nature of the collision, another conservation law can be used. If the collision is perfectly elastic, then kinetic energy is conserved. Note that although kinetic energy is not always conserved, TOTAL energy is ALWAYS conserved. You could still apply the principle of conservation of energy for an inelastic collision provided you knew the amount of energy converted to other forms of energy.


Conservation of linear momentum exp?

Linear momentum is mass times velocity. For a single point object, momentum is conserved, because the object will continue to move at a constant velocity. Nor will its mass change either. For a group of objects, too: When momentum is transferred, for example during a collision, any momentum lost by one object is gained by another. The total momentum remains constant.


Which can be described as in an isolated system momentum is always conserved?

Briefly, the only way for an object to change its momentum is by transferring momentum to another object - in other words, the other object will receive a change in momentum in the opposite direction.


How is momentum conserved in a vehicle collision?

That simply means that the total momentum before and after the crash is the same. Please bear in mind that momentum is a vector quantity. Thus, for example, one car moving at 20 m/s (that's 72 km/hour) north, and another car (same mass) that moves at 20 m/s south have a total momentum of zero, because of the way vectors are added.


What is similarity potential energy and elastic?

elastic is when the objects in the collision bounce off one another and ENERGY IS CONSERVED.


What does it means to say that momentum or any quantity is conserved?

In a closed system, the TOTAL initial momentum before an "event" is the same as the TOTAL final momentum (at the end).


A 1 kg mass is sliding along a frictionless surface at plus 6 ms and collides with another object mass equals 3 kg at rest The collision is perfectly inelastic What is the velocity of the 1kg obj?

In a perfectly inelastic collision, the two objects stick together and the momentum is conserved. Once the objects stick together, they both have the same velocity. p = mv where p is the momentum conservation of momentum for perfectly inelastic collision: m1v1i + m2v2i = (m1 + m2)vf (1kg)(6m/s) + (3kg)(0m/s) = (1 kg + 3kg)vf 6 kg·m/s = (4kg) vf vf = v1f = v2f = 1.5 m/s


When a toy truck collides into a toy car. the momentum of what is the same after and before the collition?

Collisions in the normal setting of life on Earth are complicated. Moving objects lose energy to air friction. Momentum in many cases is transferred to the Earth, where it becomes invisible, because it is such a tiny fraction of the Earth's total momentum. A toy truck and a toy car could collide in such a way that they both stop moving, but that does not mean that momentum has disappeared; it means that since they were moving in opposite directions in the first place, the algebraic sum of their momentum was zero in the first place. In outer space, you could see a simpler example of how momentum is transferred from one moving object to another, and how it is conserved. Momentum is always conserved, but often in such a complicated way that it is not easily perceived.