answersLogoWhite

0

turning effect of body

User Avatar

Wiki User

12y ago

What else can I help you with?

Related Questions

Is moment produced by torque?

Yes, moment is produced by torque. Torque is the measure of the force that can cause an object to rotate around an axis, while moment refers to the rotational effect of that force on an object. In essence, torque creates a moment that causes an object to rotate.


What is meant by torque?

Torque is nothing but a Twisting Moment.


What is mean resisting torque in turning moment diagram?

The resisting torque in a turning moment diagram is the torque opposing the applied torque or force, usually due to friction or other resistance in a system. It is represented by the downward curve or line in the turning moment diagram, indicating the counteracting force against the applied torque. The difference between the applied torque and resisting torque determines the net torque or moment acting on the system.


How to calculate angular acceleration from torque?

To calculate angular acceleration from torque, use the formula: angular acceleration torque / moment of inertia. Torque is the force applied to an object to make it rotate, and moment of inertia is a measure of an object's resistance to changes in its rotation. By dividing the torque by the moment of inertia, you can determine the angular acceleration of the object.


Difference between torque and moment?

Torque is a movement force. Moment is a static force.Torque is often presented as Nm/revolution and moment is typically presented as Nm.The words "torque" and "moment" (of force) mean the same.However, "torque" tends to be used when there is an axle or pivot to be turned around, while "moment" tends to be used in essentially non-rotational situations, such as analysis of forces on a beam.


Which force tends to turn?

torque or moment


What is the difference between moment and torque in the context of physics and how do they relate to each other?

In physics, moment and torque both refer to the turning effect of a force. However, moment is a general term for the turning effect of any force, while torque specifically refers to the turning effect of a force applied around an axis. Essentially, torque is a type of moment that involves rotational motion around a fixed point. So, torque is a specific type of moment that relates to rotational motion.


What is the difference between torque and moment, and how do they relate to each other in the context of physics?

Torque and moment are both terms used in physics to describe rotational forces. Torque specifically refers to the force that causes an object to rotate around an axis, while moment is a more general term that can refer to both rotational and linear forces. In the context of physics, torque is a type of moment that specifically relates to rotational motion. They are related in that torque is a specific type of moment that causes rotational motion in an object.


What is the relationship between torque and moment in physics?

In physics, torque and moment are essentially the same thing. Torque is the rotational equivalent of force, while moment is the rotational equivalent of linear momentum. Both terms refer to the tendency of a force to rotate an object around an axis.


When A force of 5 newton is acting parallel to the moment arm of 10 cm . so what is torque?

In order for a force to produce a torque, either all of it, or a part of it (component) must act perpendicular to the moment arm. If, as in your case, all of the force is parallel to the moment arm then the force can not produce a torque. So the answer is; the torque is zero.


What is resisting torque in turning moment of flywheel?

Momentum


How can one determine the angular acceleration of an object by using the torque applied to it?

To determine the angular acceleration of an object using the torque applied to it, you can use the formula: angular acceleration torque / moment of inertia. Torque is the rotational force applied to an object, and moment of inertia is a measure of how an object's mass is distributed around its axis of rotation. By dividing the torque by the moment of inertia, you can calculate the object's angular acceleration.