In physics, moment and torque both refer to the turning effect of a force. However, moment is a general term for the turning effect of any force, while torque specifically refers to the turning effect of a force applied around an axis. Essentially, torque is a type of moment that involves rotational motion around a fixed point. So, torque is a specific type of moment that relates to rotational motion.
Torque and moment are both terms used in physics to describe rotational forces. Torque specifically refers to the force that causes an object to rotate around an axis, while moment is a more general term that can refer to both rotational and linear forces. In the context of physics, torque is a type of moment that specifically relates to rotational motion. They are related in that torque is a specific type of moment that causes rotational motion in an object.
Rotational inertia and moment of inertia are terms used interchangeably in physics to describe an object's resistance to changes in its rotational motion. Rotational inertia specifically refers to an object's resistance to changes in its rotational speed, while moment of inertia refers to an object's resistance to changes in its rotational motion due to its mass distribution. In essence, moment of inertia is a more specific term that quantifies rotational inertia. Both concepts are crucial in understanding how objects move and rotate in the context of physics.
In physics, displacement is the change in position of an object. The derivative of displacement is velocity, which represents the rate of change of displacement with respect to time. So, the relationship between displacement and its derivative (velocity) is that velocity tells us how fast the object's position is changing at any given moment.
In physics, torque and moment are essentially the same thing. Torque is the rotational equivalent of force, while moment is the rotational equivalent of linear momentum. Both terms refer to the tendency of a force to rotate an object around an axis.
In mechanical systems, the moment arm and lever arm both refer to the distance between the axis of rotation and the point where a force is applied. The moment arm specifically relates to the perpendicular distance, while the lever arm is the actual distance along the line of action of the force.
Torque and moment are both terms used in physics to describe rotational forces. Torque specifically refers to the force that causes an object to rotate around an axis, while moment is a more general term that can refer to both rotational and linear forces. In the context of physics, torque is a type of moment that specifically relates to rotational motion. They are related in that torque is a specific type of moment that causes rotational motion in an object.
i think you don's understand difference between MOMENT & MOMENTUM MOMENT is use in statics means FORCE INTO PERPENDICULAR DISTANCE. MOMENTUM is use in physics means MASS INTO VELOCITY.actually both are part of physics so we ca't ask like this MOMENT IN PHYSICS AND STATICS??
Rotational inertia and moment of inertia are terms used interchangeably in physics to describe an object's resistance to changes in its rotational motion. Rotational inertia specifically refers to an object's resistance to changes in its rotational speed, while moment of inertia refers to an object's resistance to changes in its rotational motion due to its mass distribution. In essence, moment of inertia is a more specific term that quantifies rotational inertia. Both concepts are crucial in understanding how objects move and rotate in the context of physics.
They had to live with no tech and electronics
In physics, displacement is the change in position of an object. The derivative of displacement is velocity, which represents the rate of change of displacement with respect to time. So, the relationship between displacement and its derivative (velocity) is that velocity tells us how fast the object's position is changing at any given moment.
In physics, torque and moment are essentially the same thing. Torque is the rotational equivalent of force, while moment is the rotational equivalent of linear momentum. Both terms refer to the tendency of a force to rotate an object around an axis.
In mechanical systems, the moment arm and lever arm both refer to the distance between the axis of rotation and the point where a force is applied. The moment arm specifically relates to the perpendicular distance, while the lever arm is the actual distance along the line of action of the force.
Moment of inertia and rotational inertia are essentially the same concept, referring to an object's resistance to changes in its rotational motion. Moment of inertia is the term commonly used in physics, while rotational inertia is a more general term that can also be used. In the context of rotational motion, both terms describe how the mass distribution of an object affects its ability to rotate. The moment of inertia or rotational inertia of an object depends on its mass and how that mass is distributed around its axis of rotation. In summary, moment of inertia and rotational inertia are interchangeable terms that describe the same physical property of an object in rotational motion.
At the moment {21 feb} the time difference between Melbourne and New York is 10h. This varies between seasons.
At the moment it is 6 hours
well nothing. they are the same
The electric monopole moment is important in physics because it helps describe the distribution of electric charge in a system. It is a measure of the overall charge of an object, which is crucial for understanding the behavior of electric fields and interactions between charged particles.