To find the molarity, you need to know the amount in moles of NaOH and the volume in liters. First, convert 10 mL to liters by dividing by 1000 (10 mL = 0.01 L). Then, calculate the number of moles of NaOH using the molarity formula, Molarity = moles/volume. Given that you have 0.05 moles of NaOH and a volume of 0.01 L, the molarity would be 5 M.
The reaction between HNO3 and NaOH is a 1:1 molar ratio. This means that the moles of HNO3 required to neutralize the NaOH is the same as the moles of NaOH. Given that 20.0 ml of HNO3 is needed to neutralize 10.0 ml of a 1.67 M NaOH solution, the molarity of the HNO3 solution is twice the molarity of the NaOH solution, which is 3.34 M.
To calculate the molarity, you first need to convert the grams of NaOH to moles using the molar mass of NaOH (40 g/mol). Then, you divide the moles of NaOH by the volume of solution in liters (450 ml = 0.45 L) to get the molarity. Molarity = moles of NaOH / volume of solution in liters Moles of NaOH = 95 g / 40 g/mol = 2.375 mol Molarity = 2.375 mol / 0.45 L = 5.28 M
The balanced equation for the reaction is 1 mole of NaOH to 1 mole of HNO3. Using the titration data, you can calculate the moles of HNO3 used. From there, you can determine the moles of NaOH present in the 4.37 ml solution. Finally, dividing the moles of NaOH by the volume of the NaOH solution in liters will give you the molarity.
The molarity of the solution can be calculated by dividing the moles of solute by the volume of solution in liters. In this case, 2 moles of NaOH in 1620 mL (1.62 L) of water gives a molarity of approximately 1.23 M.
The molarity of a solution is given by the formula: Molarity = (moles of solute) / (volume of solution in liters). First, convert 7.0 mL to liters by dividing by 1000 (since 1 L = 1000 mL). Then, use the formula to calculate the moles of NaOH present in 7.0 mL of 6.0 M solution, and finally, calculate the molarity.
The answer is 0,625 moles.
The reaction between HNO3 and NaOH is a 1:1 molar ratio. This means that the moles of HNO3 required to neutralize the NaOH is the same as the moles of NaOH. Given that 20.0 ml of HNO3 is needed to neutralize 10.0 ml of a 1.67 M NaOH solution, the molarity of the HNO3 solution is twice the molarity of the NaOH solution, which is 3.34 M.
To calculate the molarity, you first need to convert the grams of NaOH to moles using the molar mass of NaOH (40 g/mol). Then, you divide the moles of NaOH by the volume of solution in liters (450 ml = 0.45 L) to get the molarity. Molarity = moles of NaOH / volume of solution in liters Moles of NaOH = 95 g / 40 g/mol = 2.375 mol Molarity = 2.375 mol / 0.45 L = 5.28 M
The balanced equation for the reaction is 1 mole of NaOH to 1 mole of HNO3. Using the titration data, you can calculate the moles of HNO3 used. From there, you can determine the moles of NaOH present in the 4.37 ml solution. Finally, dividing the moles of NaOH by the volume of the NaOH solution in liters will give you the molarity.
The molarity of the solution can be calculated by dividing the moles of solute by the volume of solution in liters. In this case, 2 moles of NaOH in 1620 mL (1.62 L) of water gives a molarity of approximately 1.23 M.
The molarity of a solution is given by the formula: Molarity = (moles of solute) / (volume of solution in liters). First, convert 7.0 mL to liters by dividing by 1000 (since 1 L = 1000 mL). Then, use the formula to calculate the moles of NaOH present in 7.0 mL of 6.0 M solution, and finally, calculate the molarity.
I assume you mean 32.0 grams of NaOH and 450 milliliters of NaOH. Molarity = moles of solute/Liters of solution ( 450 ml = 0.450 liters ) get moles of NaOH 32.0 grams NaOH (1 mole NaOH/39.998 grams) = 0.800 moles NaOH Molarity = 0.800 moles NaOH/0.450 liters = 1.78 Molar NaOH
You can use the formula: (Molarity of NaOH) x (Volume of NaOH) = (Molarity of HCl) x (Volume of HCl). Plugging in the values, (0.01470 M) x (23.74 mL) = (Molarity of HCl) x (25.00 mL). Solve for the Molarity of HCl to find the concentration of hydrochloric acid.
Molarity = moles of solute/Liters of solution ( 24.5 mL = 0.0245 L)Rearranged,moles of solute = Liters of solution * MolarityMoles NaOH = (0.0245 L)(0.130 M NaOH)= 3.19 X 10 -3 moles NaOH==================
There seems to be a misunderstanding, "miles" is not a unit of measurement for NaOH concentration. If you meant molarity instead of miles, you need the molarity of NaOH in order to calculate the moles of NaOH in the given volume which can be converted to miles using the molar mass of NaOH.
To find the molarity of the NaOH solution, use the formula M1V1 M2V2. Given that V1 25.0 mL, V2 35.0 mL, and M2 0.20 M, you can calculate M1 to be 0.14 M.
The normality of HCl can be calculated using the equation: Normality (HCl) * Volume (HCl) = Normality (NaOH) * Volume (NaOH). Solving for the normality of HCl gives 6.0N. The molarity of the HCl solution can be calculated using the formula: Molarity = Normality / n-factor. Assuming the n-factor for HCl is 1, the molarity of the HCl solution would be 6.0 M.