answersLogoWhite

0

To find the molarity, you need to know the amount in moles of NaOH and the volume in liters. First, convert 10 mL to liters by dividing by 1000 (10 mL = 0.01 L). Then, calculate the number of moles of NaOH using the molarity formula, Molarity = moles/volume. Given that you have 0.05 moles of NaOH and a volume of 0.01 L, the molarity would be 5 M.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Chemistry

What is the molarity of HNO3 if 20.0 ml of the solution is needed to exactly neutralize 10.0 ml of a 1.67 M NaOH solution?

The reaction between HNO3 and NaOH is a 1:1 molar ratio. This means that the moles of HNO3 required to neutralize the NaOH is the same as the moles of NaOH. Given that 20.0 ml of HNO3 is needed to neutralize 10.0 ml of a 1.67 M NaOH solution, the molarity of the HNO3 solution is twice the molarity of the NaOH solution, which is 3.34 M.


What is the molarity of a solution of 95 grams of NaOH to 450 ml of water?

To calculate the molarity, you first need to convert the grams of NaOH to moles using the molar mass of NaOH (40 g/mol). Then, you divide the moles of NaOH by the volume of solution in liters (450 ml = 0.45 L) to get the molarity. Molarity = moles of NaOH / volume of solution in liters Moles of NaOH = 95 g / 40 g/mol = 2.375 mol Molarity = 2.375 mol / 0.45 L = 5.28 M


What is the molarity of an naoh solution if 4.37ml is titrated by 11.1 ml of 0.0904 m hno3?

The balanced equation for the reaction is 1 mole of NaOH to 1 mole of HNO3. Using the titration data, you can calculate the moles of HNO3 used. From there, you can determine the moles of NaOH present in the 4.37 ml solution. Finally, dividing the moles of NaOH by the volume of the NaOH solution in liters will give you the molarity.


What is the molarity of a solution with 2 moles of NaOH in 1620ml of water?

The molarity of the solution can be calculated by dividing the moles of solute by the volume of solution in liters. In this case, 2 moles of NaOH in 1620 mL (1.62 L) of water gives a molarity of approximately 1.23 M.


What is the molarity of 7.0 mL of 6.0 M NaOH?

The molarity of a solution is given by the formula: Molarity = (moles of solute) / (volume of solution in liters). First, convert 7.0 mL to liters by dividing by 1000 (since 1 L = 1000 mL). Then, use the formula to calculate the moles of NaOH present in 7.0 mL of 6.0 M solution, and finally, calculate the molarity.

Related Questions

What is the molarity of a solution that contains 10.0g of NaOH in 400.0 ml of NaOH of solution?

The answer is 0,625 moles.


What is the molarity of HNO3 if 20.0 ml of the solution is needed to exactly neutralize 10.0 ml of a 1.67 M NaOH solution?

The reaction between HNO3 and NaOH is a 1:1 molar ratio. This means that the moles of HNO3 required to neutralize the NaOH is the same as the moles of NaOH. Given that 20.0 ml of HNO3 is needed to neutralize 10.0 ml of a 1.67 M NaOH solution, the molarity of the HNO3 solution is twice the molarity of the NaOH solution, which is 3.34 M.


What is the molarity of a solution of 95 grams of NaOH to 450 ml of water?

To calculate the molarity, you first need to convert the grams of NaOH to moles using the molar mass of NaOH (40 g/mol). Then, you divide the moles of NaOH by the volume of solution in liters (450 ml = 0.45 L) to get the molarity. Molarity = moles of NaOH / volume of solution in liters Moles of NaOH = 95 g / 40 g/mol = 2.375 mol Molarity = 2.375 mol / 0.45 L = 5.28 M


What is the molarity of an naoh solution if 4.37ml is titrated by 11.1 ml of 0.0904 m hno3?

The balanced equation for the reaction is 1 mole of NaOH to 1 mole of HNO3. Using the titration data, you can calculate the moles of HNO3 used. From there, you can determine the moles of NaOH present in the 4.37 ml solution. Finally, dividing the moles of NaOH by the volume of the NaOH solution in liters will give you the molarity.


What is the molarity of a solution with 2 moles of NaOH in 1620ml of water?

The molarity of the solution can be calculated by dividing the moles of solute by the volume of solution in liters. In this case, 2 moles of NaOH in 1620 mL (1.62 L) of water gives a molarity of approximately 1.23 M.


What is the molarity of 7.0 mL of 6.0 M NaOH?

The molarity of a solution is given by the formula: Molarity = (moles of solute) / (volume of solution in liters). First, convert 7.0 mL to liters by dividing by 1000 (since 1 L = 1000 mL). Then, use the formula to calculate the moles of NaOH present in 7.0 mL of 6.0 M solution, and finally, calculate the molarity.


What is the molarity of 32.0 of NaOH in 450 of NaOH solution?

I assume you mean 32.0 grams of NaOH and 450 milliliters of NaOH. Molarity = moles of solute/Liters of solution ( 450 ml = 0.450 liters ) get moles of NaOH 32.0 grams NaOH (1 mole NaOH/39.998 grams) = 0.800 moles NaOH Molarity = 0.800 moles NaOH/0.450 liters = 1.78 Molar NaOH


How do you calculate the concentration of hydrochloric acid from 23.74ml of 0.01470m NaoH for complete nutralisation of 25.00ml?

You can use the formula: (Molarity of NaOH) x (Volume of NaOH) = (Molarity of HCl) x (Volume of HCl). Plugging in the values, (0.01470 M) x (23.74 mL) = (Molarity of HCl) x (25.00 mL). Solve for the Molarity of HCl to find the concentration of hydrochloric acid.


How many moles of NaOH are present in 24.5 mL of 0.130 M NaOH?

Molarity = moles of solute/Liters of solution ( 24.5 mL = 0.0245 L)Rearranged,moles of solute = Liters of solution * MolarityMoles NaOH = (0.0245 L)(0.130 M NaOH)= 3.19 X 10 -3 moles NaOH==================


HOW many miles of NaOH are contained in 100.0 mL of 3.00 Miles NaOH?

There seems to be a misunderstanding, "miles" is not a unit of measurement for NaOH concentration. If you meant molarity instead of miles, you need the molarity of NaOH in order to calculate the moles of NaOH in the given volume which can be converted to miles using the molar mass of NaOH.


What is the molarity of the NaOH solution if 25.0 mL of the solution is required to neutralize 35.0 mL of a 0.20 M HCl solution?

To find the molarity of the NaOH solution, use the formula M1V1 M2V2. Given that V1 25.0 mL, V2 35.0 mL, and M2 0.20 M, you can calculate M1 to be 0.14 M.


A 25.0 ml sample of hcl was titrated to the endpoint with 15.0 ml of 2.0 normality naoh what was the normality of th hcl what was its molarity?

The normality of HCl can be calculated using the equation: Normality (HCl) * Volume (HCl) = Normality (NaOH) * Volume (NaOH). Solving for the normality of HCl gives 6.0N. The molarity of the HCl solution can be calculated using the formula: Molarity = Normality / n-factor. Assuming the n-factor for HCl is 1, the molarity of the HCl solution would be 6.0 M.