I have no idea
According to Boyle's Law, the pressure of a gas in a container is inversely proportional to its volume when temperature is constant. This means that as the volume of the container decreases, the pressure of the gas inside will increase, and vice versa.
If you increase the volume of the container, and not the gas itself, then the pressure decreases. If you increase the volume of the gas, and not the container, then the pressure increases.
Changing the color of the container will not affect the pressure inside it. Pressure is determined by factors such as temperature, volume, and the number of gas molecules present, not by the container's color.
When the mixture is placed in a container half the volume of the original container, the total pressure increases by a factor of two due to Boyle's Law, which states that pressure and volume are inversely proportional as long as temperature is constant. So, the total pressure of the mixture in the smaller container will be double the pressure of the mixture in the original container.
This problem can be solved with the ideal gas law. The original pressure and volume of the container are proportional the final pressure and volume of the container. The original pressure was 1 atmosphere and the original volume was 1 liter. If the final volume is 1.8 liters, then the final pressure is 0.55 atmospheres.
If the volume of a container of gas is reduced, the pressure inside the container will increase. This is because reducing the volume decreases the amount of space the gas molecules have to move around, leading to them colliding more frequently with the walls of the container, thus increasing the pressure.
If the volume of a container of air is reduced, the pressure of the air inside the container will increase. This is because the volume and pressure of a gas are inversely proportional according to Boyle's Law. The particles inside the container will collide more frequently with the walls, leading to an increase in pressure.
When the volume of a gas container decreases, the pressure of the gas increases. This is because pressure and volume are inversely proportional, meaning that as one goes up, the other goes down. So, when the volume decreases, the pressure increases.
If temperature increases, either the volume or the pressure must increase. Since you have limited the volume by closing the container, pressure must increase.
The mass of the gass, the volume of the container holding the gas, and the temperature of the gass. If you have a container of gas, the greater the mass of the gas, the more molecules there are in the container, and this leads to greater pressure. If you have a fixed mass of gas, changing the volume of the container holding the gas will cause the pressure to change. Increasing the volume of the container decreases the pressure. Decreasing the volume of the container increases the pressure. If you increase the temperature of a gas without changing its mass or volume, pressure increases.
False. Gases in a container take the shape of the container. The volume of a gas increases with temperature and inversely with pressure, except when in a closed container where volume remains the same as the volume of the container and the temperature and pressure will vary.
If the volume of the container is reduced to one-half of its original size, the pressure will increase proportionally according to Boyle's Law. So if the original pressure was 10 psi, then the new pressure would be 20 psi when the volume is reduced by half.