answersLogoWhite

0


Best Answer

Humans are not able to synthesize Vitamin C thus we are able to take up a lot in our diet.

Every winter, as the influenza (flu) season spreads across America, people flock to stores to get vitamin C tablets to deliver them from the symptoms of the common cold. Vitamin C, or ascorbic acid, is an important cofactor that stimulates the immune system and apparently assists in shortening the length of illness and the severity of flu symptoms (although the exact effects of vitamin C on the flu are still debated). In addition to stimulating the immune system, vitamin C has been identified with several other functions in the human body including production of an important protein, collagen, found in several types of connective tissue including bone and cartilage (Garrett 1999). A deficiency in vitamin C can cause scurvy, a disease that results from deterioration of connective tissue, and prolonged lack of vitamin C can even lead to death (Marieb 1998). Humans are unable to synthesize vitamin C, but are able to store a 30-day supply of this important nutrient. To maintain this supply, a person must ingest about 60 mg of vitamin C each day, or approximately the amount of vitamin C in an average size orange. Although humans, apes, monkeys, fruit bats, and several species of fish (including trout and salmon) are unable to synthesize vitamin C, many other animals are quite capable of making their own vitamin C and do not need to eat fruit and vegetables to acquire this nutrient (Garrett 1999).

Many people, especially in northern climates during the winter, have suffered from a lack of vitamin C throughout history. It's very likely that many people have died from scurvy as a result of being unable to provide themselves with fresh fruit and vegetables during the winter months. If vitamin C is such an important nutrient, and many other animals possess the ability to synthesize it, why didn't God give humans the biochemical pathways to synthesize vitamin C? There are two obvious possibilities why people today cannot synthesize vitamin C: (1) Humans were created without the ability to synthesize vitamin C, or (2) they lost the information from genes that code for the proteins necessary to synthesize vitamin C.

The first possibility is very simple and there is logical Biblical and scientific support for this scenario. From the beginning, Adam and Eve were not created with a biochemical pathway for making vitamin C and were dependent on eating fruit, the best source of vitamin C. We know they were instructed to eat any fruit in the Garden of Eden except fruit from the Tree of the Knowledge of Good and Evil, and yet had access to the Tree of Life. Adam and Eve lived in an environment with many similarities to heaven. However, unlike those in heaven, Adam and Eve were commanded to be fruitful and multiply, and produce little Adams and Eves. Human reproduction would require nutrients to build tissues for the child during and after pregnancy, an indication that Adam and Eve had to eat to provide for their developing children and also for the maintenance of their own bodies. Furthermore, today nutritionists recommend a diet high in fruit and vegetables as being the healthiest source of nutrients, which is consistent with what God instructed Adam and Eve to eat. It is possible that God made Adam and Eve (and us) dependent on fruit as a source of vitamin C as a reminder that they were dependent on Him for food that must be eaten to stay healthy.

Is it possible that Adam and Eve did have the information in their genes to produce the enzymes necessary for synthesizing vitamin C? Are there any remnants of those genes that can be identified in the human genome today? What would a non-functioning remnant of a gene look like if scientists found one? One thing is sure today -- if Adam and Eve did have the information in their genes to make vitamin C, health problems with scurvy recorded as far back as the Roman Empire (Davies 1970) indicate this information disappeared long ago from the human genome.

There are sequences of DNA (in the genome) that are claimed to be nonfunctional remnants of presently functional genes. These sequences of DNA are called pseudogenes, and there are several criteria used to distinguish pseudogenes from functional genes. A pseudogene DNA sequence typically is greater than 70% similar (homologous) to a functional gene but lacks a promoter that would enable the sequence to be transcribed into RNA and finally a protein (Zhang et al. 2003). Pseudogenes also typically have disruptions to the "coding region," such as stop codons that prematurely end the translation of the gene into a protein (Zhang et al. 2003). Pseudogenes are believed to vary significantly from the original functioning gene because they are no longer under selective constraints. In other words, since the cell is no longer using this stretch of DNA, it accumulates mutations at a fast rate -- degrading the original functional gene sequence into a pseudogene (Karp 2002). Many pseudogenes are identified by comparing similar sequences in the genome to functional genes within an organism. For example, in humans there are many functional genes for ribosomal proteins, and there are several human ribosomal pseudogenes that meet the criteria mentioned above (Zhang et al. 2003). To find a pseudogene for vitamin C in the human genome, a comparison would have to be made between the human genome and the genome of an organism that had a functional gene for synthesizing vitamin C.

In 1994, a group of Japanese scientists identified a DNA sequence in humans that had many similarities to the rat gene that codes for the enzyme (L-gulono-γ-lactone) that catalyzes the last step of vitamin C synthesis (Nishikimi et al. 1994). The human pseudogene sequence discovered has four of these 12 exons. (Exons are the modular coding regions of a gene.) These four human exon sequences have many characteristics of a pseudogene. There is a 70-80% sequence homology between the rat and human sequences depending on the exon, and two stop codons. Later analysis confirmed that these four exons are present in other primates as well (Inai, Ohta, and Nishikimi 2003). Humans are missing only the final enzyme for the last step in synthesizing vitamin C, but have all of the other enzymes necessary to convert glucose into vitamin C.

It would seem from the evidence of a potential human pseudogene for L-gulono-γ-lactone and the presence of the other enzymes necessary for synthesizing vitamin C that humans have lost the ability to make vitamin C. However, there is more to this story. There are only four exons for the gene encoding L-gulono-γ-lactone in humans. Two-thirds of the homologous rat gene is completely missing. Most pseudogenes represent 90% of the entirefunctional gene. This DNA sequence, labeled as a pseudogene, might have an entirely different function than the rat gene.

Stating that only the last enzyme is missing for the pathway to convert glucose to vitamin C might imply to the untrained individual that there is a biochemical pathway that leads to a dead end. Actually, the biochemical pathway that leads to the synthesis of vitamin C in rats also leads to the formation of five-carbon sugars in the pentose phosphate pathway present in virtually all animals (Linster and Van Schaftingen 2007). There are several metabolic intermediates in this pathway illustrating that these substances can be used as precursors for many compounds in the cell. In the pentose phosphate pathway, five-carbon sugars are made from glucose (a six-carbon sugar) to be used in the synthesis of DNA, RNA, and many energy producing substances such as ATP and NADPH (Garrett 1999). Animals that synthesize vitamin C can use both pathways illustrated in the simplified diagram below. Humans and the other animals "less fortunate" than rats only use the pentose phosphate pathway.

There is no dead end or wasted metabolic intermediates, and there is no need to have the enzyme to make vitamin C since humans are able to get all of the vitamin C they need from food substances.

Thousands of human pseudogenes have been catalogued, but in spite of the similarities to functional genes, the exact role of pseudogene sequences in the genome are not known by any scientist. It is not necessary to assume that pseudogenes are remnants of once functioning genes that have been lost and now clutter the genome like junk in a rubbish heap. It is possible that these regions of DNA do have a role in human and animal genomes and this role has not been discovered yet. Over 100 years ago, Robert Wiedersheim hypothesized that the human body had more than 80 organs that lacked any function simply because it was unknown at the time what these organs did (Wiedersheim 1895). They were assumed to be vestigial or "junk" leftovers from evolutionary history and several of these organs are still presented this way in Biology textbooks today. The science of genomics is in the same position today. Just because scientists do not currently know the function of a portion of DNA does not mean that it does not have any function and therefore it is an evolutionary leftover. It has been reported that pseudogenes play a regulatory role in yeast for the functional genes that they share sequence homology with (Hirotsune et al. 2003). There needs to be more research in this area to verify these claims, but at least there are some indications of a functional role for pseudogenes in the human genome.

So, did Adam and Eve have a gene to code for an enzyme that would synthesize vitamin C and was this information eventually lost as a result of the curse, or were they simply created without this information in their genomes? That question might not get answered until Christ returns. But in the meantime, humans require plenty of vitamin C in their diet -- so have an orange!

User Avatar

Wiki User

12y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

13y ago

guinea pigs

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What animal cannot synthesize vitamin C?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Which animals is unable to synthesize vitamin c and will become deficient without supplement?

Guinea pigs must have a source of vitamin C in their diet. They are unable to synthesize their own.


Which vitamin is needed to synthesize nonessential amino acids from essential amino acids?

Vitamin C is needed to synthesize nonessentail amino acids from essential amino acids.


What South American rodent is synonymous with experimentation because it is one of the few animals which like humans cannot synthesize Vitamin C but must get it from diet?

Guinea pig


Does high intake of antibiotics will kill the bacteria living in the gut which synthesize vitamin C?

Yes


Vitamin C and A are important for good health. Which of these might your body store?

Vitamin A. Humans cannot store Vitamin C.


What protein is necessary to synthesize vitamin K?

A) Albumin B) GI mucosa C) Mucopolysaccharides D) Prothrombin


What are the animal sources of vitamin C?

Animal sources have low concentrations of vitamin C. One good example is cow's milk. Nowadays animal sources of vitamin c is usually due to genetically modified animals that are made to have higher concentrations of vitamin c in its body and byproduct compared to its normal brethren.AnswerAccording to Wikipedia, a calf's liver is the best animals source of Vitamin C, which contains 36mg of Vitamin C in every 100g, compared to 2mg in cows' milk. See the related links for more information.


If something can harm us humans does that always mean it could harm animals too?

No. If something will harm a human an animal may not be affected...the reverse is also true...if it is safe for a human it doesn't follow that it is safe for an animal. Human's can safely eat chocolate...dogs cannot. Most human's can safely consume aspirin...cats cannot. If human's don't get vitamin C they get rickets...many animals manufacture their own vitamin C so lack of vitamin C in their diet is not harmful.


Why is vitamin c not found in man?

Because the gene that synthesizes vitamin C is full of deleterious mutations in humans and is inactivated. This is posited to be caused by our primate ancestors being basically fruitovores and not needing to synthesize vitamin C, so this gene could have started picking up mutations that were not visible to natural selection and so were not selected out.


Why does people get scurvy when they lack vitamin c?

Scurvy does not occur in most animals because theycan synthesize their ... Scurvy or subclinical scurvy is caused by the lack of vitamin C. In modern Western societies, scurvy is rarely present in adults, although infants and elderly people are ...meat from animals which make their own vitamin C(which most animals do)


Which vitamin enhances the absorption of insulin?

Animal studies have concluded that vitamin C enhances chromium absorption of insulin.


Where can you found vitamin c?

Vitamin D is found in green vegetables and sunlight.Vitamin D occurs naturally in fish and a few other foods. In some countries, staple foods such as milk, flour and margarine are artificially fortified with vitamin D, and it is also available as a supplement in pill form.