answersLogoWhite

0


Best Answer

Each of the two sidebands can be modulated independently to give two simultaneous communication channels. There would be no point in radiating the carrier, as it carries no information, and would waste transmitter power.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are the Applications of double side suppressed carrier modulation?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

What difference between amplitude modulation and double sideband suppressed carrier?

Both are forms of AM but in suppressed carrier a filter is used to attenuate the carrier frequency prior to transmission. This is usually done to reduce the total transmitter power consumption. An ordinary AM radio cannot correctly receive suppressed carrier stations, you must have a receiver that replaces the carrier prior to the detector stage.


The relationship of the bandwidth required for double-sideband emitted carrier AM to the bandwidth of the modulating signal of?

In Amplitude Modulation (AM), specifically in the case of Double Sideband Suppressed Carrier (DSB-SC) or Full Carrier (DSB-FC) AM, the required bandwidth is twice the bandwidth of the modulating signal. If the modulating signal has a bandwidth of B Hz, the bandwidth required for AM would be 2B Hz. This is because both the upper and lower sidebands of the carrier wave are utilized in the modulation process, each consuming bandwidth equivalent to the original signal.


What are the advantages and disadvantages of double sideband suppressed carrier modulation?

Amplitude modulation of a carrier results in a transmitted signal consisting of the carrier, plus an 'upper sideband' and a 'lower sideband', spaced above and below the carrier frequency by the frequency of the modulation.The bandwidth of the whole signal is double the modulation frequency. Also, the power in the carrier is constant, and power must be added in order to radiate the sidebands.All the receiver needs in order to extract the information from the signal is one complete sideband, and knowledge of the frequency and phase of the carrier. Economically speaking, the carrier is wasted power, and the other sideband is wasted power andwasted spectrum.If you can filter away one of the sidebands before transmission, then you save half of the occupied spectrum, and the receiver has everything it needs to decode the signal. If you can also filter away the carrier ... or at least knock it way down ... before transmission, you can save a lot of power and use it for the remaining sideband, which extends your range for a given amount of power. The receiver still has everything it needs, as long as it can pick up a sniff of carrier ... enough to derive the carrier frequency and phase.This mode is known as "Single Sideband Suppressed Carrier". It's exactly how the video portion of standard NTSC analog TV was transmitted, throughout all of human history until June 2009.


How do you generate double-sideband suppressed carrier?

it can be genrated by multipling of the carrie signal and the message signal that varies the amplitud of the carrire nd supprssd the caarir signal.


What are the disadvantages of DSB-fC modulation?

in DSB-SC since carrier is suppressed,hence power consumption is reduced and nominal.The power in the modulated signal is contained in all four sidebands.The bandwidth of the DSB-SC signal is double that of the message signal, that is, BWDSB-SC =2B (Hz).How many sidebands? There's only two; upper and lower.

Related questions

What is analog modulation?

Analog modulationIn analog modulation, the modulation is applied continuously in response to the analog information signal.Common analog modulation techniques are:Amplitude modulation (AM) (here the amplitude of the modulated signal is varied) Double-sideband modulation (DSB) Double-sideband modulation with unsuppressed carrier (DSB-WC) (used on the AM radio broadcasting band)Double-sideband suppressed-carrier transmission (DSB-SC)Double-sideband reduced carrier transmission (DSB-RC)Single-sideband modulation (SSB, or SSB-AM), SSB with carrier (SSB-WC)SSB suppressed carrier modulation (SSB-SC)Vestigial sideband modulation (VSB, or VSB-AM)Quadrature amplitude modulation (QAM)Angle modulation Frequency modulation (FM) (here the frequency of the modulated signal is varied)Phase modulation (PM) (here the phase shift of the modulated signal is varied)


What difference between amplitude modulation and double sideband suppressed carrier?

Both are forms of AM but in suppressed carrier a filter is used to attenuate the carrier frequency prior to transmission. This is usually done to reduce the total transmitter power consumption. An ordinary AM radio cannot correctly receive suppressed carrier stations, you must have a receiver that replaces the carrier prior to the detector stage.


Is carrier signal present at output of double side band suppressed carrier?

No, the carrier signal is not present at the output of double side band suppressed carrier. That is what suppressed carrier means. However, the receiver has enough information to regenerate the carrier if need be. The advantage of suppressed carrier mode is that more power can be deployed to the signal-carrying portion of the modulated carrier.


The relationship of the bandwidth required for double-sideband emitted carrier AM to the bandwidth of the modulating signal of?

In Amplitude Modulation (AM), specifically in the case of Double Sideband Suppressed Carrier (DSB-SC) or Full Carrier (DSB-FC) AM, the required bandwidth is twice the bandwidth of the modulating signal. If the modulating signal has a bandwidth of B Hz, the bandwidth required for AM would be 2B Hz. This is because both the upper and lower sidebands of the carrier wave are utilized in the modulation process, each consuming bandwidth equivalent to the original signal.


What is the dynamic characteristic of a double-sideband?

Double-sideband modulation is a type of amplitude modulation where both upper and lower sidebands are present with the carrier signal. The dynamic characteristic of double-sideband modulation is that it allows for efficient use of bandwidth but is susceptible to fading and interference.


Difference between dsb lc dsb SC?

The difference between double side band long carrier (DSB LC) and double side band short carrier (DSB SC) is the is how the amplitude modulation (AM) is referenced in the carrier wave.


How does double sideband differ from standard AM?

Standard AM already has double sideband. When you talk about double sideband, however, often the meaning is usually "double sideband, suppressed carrier". By suppressing the carrier, you can impute more power into the sidebands, because you are not providing power to the carrier, which accounts for a significant percentage of the total power. Since the sidebands actually contain the signal, you can boost the signal to noise ratio by suppressing the carrier. This comes at a cost, however, in complexity, because you need to regenerate the carrier in order to demodulate the signal. In fact, many systems use single sideband, suppressed carrier, doubling the available power to the sideband containing the signal over double sideband suppressed carrier. This works, again at the cost of receiver and transmitter complexity, because the two sidebands contain the same information.


What has the author Edward Bedrosian written?

Edward Bedrosian has written: 'Applications of Volterra-system analysis' -- subject(s): Volterra equations, System analysis 'Transionospheric propagation of FM signals' -- subject(s): Signal theory (Telecommunication) 'Mutual interference in fast-frequency-hopped, multiple-frequency-shift-keyed, spread-spectrum communication satellite systems' -- subject(s): Computer simulation, Communication systems, Artificial satellites in telecommunication, Military telecommunication, Interference, Radio, Spread spectrum communications, Armed Forces 'Amplitude and phase demodulation of filtered AM/PM signals' -- subject(s): Pulse modulation (Electronics), Amplitude modulation 'A comparison of single-sideband, suppressed-carrier and double-sideband, full-carrier amplitude modulation' -- subject(s): Amplitude modulation


What are the advantages and disadvantages of double sideband suppressed carrier modulation?

Amplitude modulation of a carrier results in a transmitted signal consisting of the carrier, plus an 'upper sideband' and a 'lower sideband', spaced above and below the carrier frequency by the frequency of the modulation.The bandwidth of the whole signal is double the modulation frequency. Also, the power in the carrier is constant, and power must be added in order to radiate the sidebands.All the receiver needs in order to extract the information from the signal is one complete sideband, and knowledge of the frequency and phase of the carrier. Economically speaking, the carrier is wasted power, and the other sideband is wasted power andwasted spectrum.If you can filter away one of the sidebands before transmission, then you save half of the occupied spectrum, and the receiver has everything it needs to decode the signal. If you can also filter away the carrier ... or at least knock it way down ... before transmission, you can save a lot of power and use it for the remaining sideband, which extends your range for a given amount of power. The receiver still has everything it needs, as long as it can pick up a sniff of carrier ... enough to derive the carrier frequency and phase.This mode is known as "Single Sideband Suppressed Carrier". It's exactly how the video portion of standard NTSC analog TV was transmitted, throughout all of human history until June 2009.


What is the Comparison of frequency modulation and amplitude modulation?

I will answer this in the simplest way I know in the application I use it in; this would be in audio applications. Amplitude modulation is modulation of a carrier source's loudness; Frequency modulation is modulation of a carrier source's pitch; and Phase modulation is modulation of a carrier source's duty cycle/symmetry/timbre. One can often notice that all 3 modulation types relate in some way with another in that when frequency rises and falls it typically makes it favorable for either a rise in loudness or timbre. The most analog way to understand it in nature is typically your small vowel sounds like "iiiiiiiiiiiiii" as in the American-English word 'easy' and 'eeeeeeeeeeee' as in 'edge' are easier to say with loudness at higher pitches; medium vowel sounds like 'uuuuuuuuuuu' as in 'Utter' or 'sOn' and 'aaaaaaaaaaaa' as in 'Awe' *chuckles* are easier to say with loudness at medium pitches; large vowel sounds like 'ooooooooooo' as in 'Oh' and 'uuuuuuuuuuuu' as in 'rUne' are easier to say with loudness at lower pitches. AM is often known as 'tremolo'; FM is often known as 'vibrato'; PM is often known as 'wow'; AM/FM is 'vibremelo' and fill in the blanks for the other sub-variants. Maikel Stellerfield


What does a balanced modulator produce?

Please answerin the case of communication , a balanced modulator is used to suppress the carrier from a conventional amplitude modulated signal


When modulation frequency is double the modulation index is halF and the modulating voltage remains constant the modulation system is?

frequency modulation..