answersLogoWhite

0


Best Answer

It is a polar molecule which causes a dipole but it isn't polar enough to be considered a hydrogen bond. London dispersion forces always exist.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar
More answers
User Avatar

AnswerBot

2w ago

The intermolecular forces for H2Se are London dispersion forces, dipole-dipole interactions, and hydrogen bonding. Hydrogen bonding is the strongest among these forces due to the presence of hydrogen attached to a highly electronegative atom, such as selenium.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are the intermolecular forces for H2Se?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemistry

Why is the boiling point of H2O much higher than h2se?

The boiling point of a substance is influenced by the strength of intermolecular forces between its molecules. In the case of H2O (water), it forms strong hydrogen bonds between molecules, resulting in a higher boiling point compared to H2Se (hydrogen selenide), which has weaker dispersion forces due to larger atomic size and lower electronegativity of selenium.


What can you say about the relative strength of the intermolecular forces in the two compounds?

The relative strength of intermolecular forces depends on the types of molecules involved. Compounds with hydrogen bonding, such as water, tend to have stronger intermolecular forces compared to those with only London dispersion forces, like diethyl ether. This results in higher boiling points for compounds with stronger intermolecular forces.


What intermolecular forces are present in cl2?

The intermolecular forces in Cl2 are London dispersion forces, which are the weakest type of intermolecular force. This occurs due to temporary fluctuations in electron distribution.


What is the relationship between the strength of the intermolecular forces and boiling point?

The strength of intermolecular forces is directly related to the boiling point of a substance. Substances with stronger intermolecular forces require more energy to break those forces, leading to a higher boiling point. Conversely, substances with weaker intermolecular forces have lower boiling points.


What are the intermolecular forces of attraction within pentane?

The intermolecular forces in pentane are London dispersion forces. These forces result from the temporary uneven distribution of electrons in the molecule, leading to temporary dipoles. Due to the nonpolar nature of pentane, London dispersion forces are the predominant intermolecular forces present.

Related questions

Intermolecular forces that must be overcome to convert H2Se to gas?

The intermolecular forces that must be overcome to convert H2Se (hydrogen selenide) to gas are London dispersion forces and dipole-dipole interactions. These forces hold the H2Se molecules together in the liquid state. As energy is added to the system, these intermolecular forces weaken, allowing the molecules to overcome the attractive forces and transition into the gaseous state.


Why is the boiling point of H2O much higher than h2se?

The boiling point of a substance is influenced by the strength of intermolecular forces between its molecules. In the case of H2O (water), it forms strong hydrogen bonds between molecules, resulting in a higher boiling point compared to H2Se (hydrogen selenide), which has weaker dispersion forces due to larger atomic size and lower electronegativity of selenium.


What interaction is not a type of intermolecular force?

Intramolecular forces are not intermolecular forces !


What is the intermolecular ammonia and ammonia?

The intermolecular forces are hydrogen bonding.


How do thermal and intermolecular forces behave with each other?

When there is more thermal energy, then there are less intermolecular forces.


What can you say about the relative strength of the intermolecular forces in the two compounds?

The relative strength of intermolecular forces depends on the types of molecules involved. Compounds with hydrogen bonding, such as water, tend to have stronger intermolecular forces compared to those with only London dispersion forces, like diethyl ether. This results in higher boiling points for compounds with stronger intermolecular forces.


What intermolecular forces are present in cl2?

The intermolecular forces in Cl2 are London dispersion forces, which are the weakest type of intermolecular force. This occurs due to temporary fluctuations in electron distribution.


What is the relationship between the strength of the intermolecular forces and boiling point?

The strength of intermolecular forces is directly related to the boiling point of a substance. Substances with stronger intermolecular forces require more energy to break those forces, leading to a higher boiling point. Conversely, substances with weaker intermolecular forces have lower boiling points.


What are the intermolecular forces of attraction within pentane?

The intermolecular forces in pentane are London dispersion forces. These forces result from the temporary uneven distribution of electrons in the molecule, leading to temporary dipoles. Due to the nonpolar nature of pentane, London dispersion forces are the predominant intermolecular forces present.


What are the intermolecular forces of CH3CH2CH2OH?

London dispersion forces


What experimental property directly correlates with the strength of the intermolecular forces?

The boiling point of a substance is directly correlated with the strength of intermolecular forces. Substances with stronger intermolecular forces require more energy to overcome these forces, leading to higher boiling points. Conversely, substances with weaker intermolecular forces have lower boiling points.


What is the intermolecular forces of HBR?

The intermolecular forces of HBr are London dispersion forces and dipole-dipole interactions. London dispersion forces are the weakest intermolecular forces and occur between all atoms and molecules. Dipole-dipole interactions arise due to the polarity of the HBr molecule.