answersLogoWhite

0

The intermolecular forces in acetone are weaker.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Chemistry

Does the vapor pressure increase as the strength of intermolecular forces between molecules increases?

Yes, the vapor pressure decreases as the strength of intermolecular forces between molecules increases.


Do ionic compounds or covalent compounds have stronger intermolecular forces?

Intermolecular forces are the forces of attraction that exist between molecules in a compound. The stronger the attractions between particles the more difficult it will be to separate them. When substances boil, the particles are completely separated from one another and the attractions between the molecules are completely overcome.


What causes the differences in melting points and boiling points between ionic and covalent compounds molecular substances?

The differences in melting and boiling points between ionic and covalent compounds are due to the strength of the intermolecular forces present. Ionic compounds have strong electrostatic forces of attraction between oppositely charged ions, resulting in higher melting and boiling points. Covalent compounds have weaker intermolecular forces such as London dispersion forces or dipole-dipole interactions, leading to lower melting and boiling points compared to ionic compounds.


Do molecular compounds have lower melting points than ionic compounds?

Generally, yes. Molecular compounds have weaker intermolecular forces compared to the strong electrostatic forces present in ionic compounds. This results in lower melting points for molecular compounds since less energy is required to break the intermolecular forces.


How can one determine the boiling points of compounds?

The boiling points of compounds can be determined by considering the strength of the intermolecular forces between molecules. Compounds with stronger intermolecular forces, such as hydrogen bonding or dipole-dipole interactions, tend to have higher boiling points. Additionally, the size and shape of the molecules can also affect the boiling point. By analyzing these factors, one can predict and compare the boiling points of different compounds.

Related Questions

How are the melting points of ionic compounds different from molecular compounds?

Very much higher.


Does the melting point depend on the substances being melted?

Yes, because the melting point depends on the strength of the intermolecular forces, which are different for different molecules and compounds. Stronger intermolecular forces mean a higher melting point.


Does the vapor pressure increase as the strength of intermolecular forces between molecules increases?

Yes, the vapor pressure decreases as the strength of intermolecular forces between molecules increases.


Why dont all particles become gases?

This is because of intermolecular forces holding them together. The strength of the intermolecular forces determines the particles state. If they are strong enough, the particles can remain a solid, too weak and it becomes gaseous (note, it is all relative to SATP).


What experimental property directly correlates with the strength of the intermolecular forces?

The boiling point of a substance is directly correlated with the strength of intermolecular forces. Substances with stronger intermolecular forces require more energy to overcome these forces, leading to higher boiling points. Conversely, substances with weaker intermolecular forces have lower boiling points.


Do ionic compounds or covalent compounds have stronger intermolecular forces?

Intermolecular forces are the forces of attraction that exist between molecules in a compound. The stronger the attractions between particles the more difficult it will be to separate them. When substances boil, the particles are completely separated from one another and the attractions between the molecules are completely overcome.


What causes the differences in melting points and boiling points between ionic and covalent compounds molecular substances?

The differences in melting and boiling points between ionic and covalent compounds are due to the strength of the intermolecular forces present. Ionic compounds have strong electrostatic forces of attraction between oppositely charged ions, resulting in higher melting and boiling points. Covalent compounds have weaker intermolecular forces such as London dispersion forces or dipole-dipole interactions, leading to lower melting and boiling points compared to ionic compounds.


Do molecular compounds have lower melting points than ionic compounds?

Generally, yes. Molecular compounds have weaker intermolecular forces compared to the strong electrostatic forces present in ionic compounds. This results in lower melting points for molecular compounds since less energy is required to break the intermolecular forces.


How can one determine the boiling points of compounds?

The boiling points of compounds can be determined by considering the strength of the intermolecular forces between molecules. Compounds with stronger intermolecular forces, such as hydrogen bonding or dipole-dipole interactions, tend to have higher boiling points. Additionally, the size and shape of the molecules can also affect the boiling point. By analyzing these factors, one can predict and compare the boiling points of different compounds.


What does a strong odor indicate about the strength of intermolecular forces in a compound and why?

A strong odor typically indicates that the compound has weak intermolecular forces. This is because substances with weak intermolecular forces tend to easily vaporize and disperse in the air, allowing their molecules to reach our nose more easily and produce a noticeable smell. Conversely, compounds with strong intermolecular forces tend to have lower vapor pressures and are less likely to produce a strong odor.


How does bonding effect the intermolecular forces?

Bonding affects intermolecular forces by influencing the strength of attractions between molecules. Covalent bonds within molecules contribute to intramolecular forces, while intermolecular forces, such as hydrogen bonding or van der Waals forces, occur between molecules. The type and strength of bonding within a molecule can impact the overall intermolecular forces affecting its physical properties.


What is the relationship between the strength of the intermolecular forces and boiling point?

The strength of intermolecular forces is directly related to the boiling point of a substance. Substances with stronger intermolecular forces require more energy to break those forces, leading to a higher boiling point. Conversely, substances with weaker intermolecular forces have lower boiling points.