1 mole of gas at STP occupies 22.4 liters.
1 mole of gas at STP occupies 22.4 liters.
It occupies 22.4 L
1 mol of any gas has a volume of 22.4 L at STP
1 mole of gas at STP occupies 22.4 liters.
1 mole of gas at STP occupies 22.4 liters.
1 mole of gas at STP occupies 22.4 liters.
It occupies 22.4 L
Avogadro's law states that equal volumes of gases at the same temperature and pressure contain the same number of molecules. Therefore, at standard temperature and pressure (STP), a given volume of gas will contain the Avogadro number of molecules, which is approximately 6.022 x 10^23.
To calculate the volume of CO2 at STP (Standard Temperature and Pressure), you can use the ideal gas law equation: PV = nRT. First, find the number of moles of CO2 using the ideal gas law equation. Then, use the molar volume of a gas at STP (22.4 L/mol) to find the volume at STP.
First find out how many moles of gas are collected under the given conditions using the Ideal Gas Law.See the Related Questions link to the left for how to do that. Then use that number of moles and determine the volume of that much gas at STP, also using the Ideal Gas Law question to the left.
Using the ideal gas law, at STP (standard temperature and pressure), 1 mole of gas occupies 22.4 liters. Therefore, a balloon with 560 liters at STP would contain 25 moles of gas (560 liters / 22.4 liters/mole).
It occupies 22.4 L