get a brain get a brain get a brain
Elements across a series have the same number of attributes or characteristics.
Yes, that is true. During hybridization, atomic orbitals from the same atom or different atoms overlap to form new hybrid orbitals with equal energy and identical shapes. These hybrid orbitals are a combination of atomic orbitals and are used to describe the geometry of molecules.
The elements in the same period as sodium on the periodic table have the same number of electron orbitals. So, phosphorus, sulfur, chlorine, argon, potassium, calcium, and scandium would all have the same number of electron orbitals as sodium.
They are in the same column.
When two atoms combine, the overlap of their atomic orbitals produces molecular orbitals. An atomic orbital belongs to a particular atom, whereas a molecular orbital belongs to a molecule as a whole. Much like an atomic orbital, two electrons are required to fill a molecular orbital. A bonding orbital is a molecular orbital occupied by the two electrons of a covalent bond
No two elements may have the same atomic number. But two elements may have same atomic mass. Hence atomic number is better than atomic mass.
No.
all elements in a period have the same amount of orbitals and if an element is in period 2 it has 2 orbitals if it is in period 3 it has 3 orbitals ..etc
Elements have the same number of protons in each atomic nucleus.
The element magnesium has the same number of electron orbitals as sodium - both have three electron orbitals. Sodium and magnesium are in the same period on the periodic table, which means they have the same number of electron shells.
The same as its atomic number.
Hybridization of atomic orbitals is the intermixing of atomic orbitals having a approximate energy to form equal number of hybrid orbitals having the same shape, size and energy but pointing in different directions. The new orbitals which are formed are "hybrids" of the originals and have properties that are somewhere in between. For example, a common hybridization is sp3 where three p orbitals combine with an s orbital to form four new orbitals. Other combinations (such as sp and sp2) are also possible.