(Initial downwards speed (m/s)) + (9.81m/s²)x(Time it has been falling(s)) = Downwards speed in metres per second.
The equation to calculate object momentum is: p = m * v where p is momentum, m is mass of the object, and v is the velocity of the object.
The fourth kinematic equation in physics is used to calculate the displacement of an object when its initial velocity, final velocity, acceleration, and time are known.
To find the initial velocity of an object in motion, you can use the equation: initial velocity final velocity - (acceleration x time). This equation helps you calculate the starting speed of the object based on its final velocity, acceleration, and the time it took to reach that final velocity.
To determine the final vertical velocity of an object, you can use the equation: final velocity initial velocity (acceleration x time). This equation takes into account the initial velocity of the object, the acceleration due to gravity, and the time the object has been falling. By plugging in the values for these variables, you can calculate the final vertical velocity of the object.
The kinematics equation for distance is: distance initial velocity time 0.5 acceleration time2. This equation is used to calculate the displacement of an object in motion by plugging in the values of initial velocity, time, and acceleration to find the total distance traveled by the object.
The velocity formula that includes acceleration and time is: velocity initial velocity (acceleration x time). This formula can be used to calculate the velocity of an object by plugging in the initial velocity, acceleration, and time values into the equation. The result will give you the final velocity of the object after a certain amount of time has passed.
The linear acceleration equation is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This equation is used to calculate the acceleration of an object moving in a straight line by finding the change in velocity over time.
The equation for linear acceleration is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This equation is used to calculate the rate of change in velocity of an object by finding the difference between the final and initial velocities, and dividing that by the time taken for the change to occur.
The word equation used to calculate acceleration is: acceleration = change in velocity / time taken. This equation quantifies how an object's velocity changes over a period of time, giving a measure of its rate of acceleration.
To calculate displacement using the work-energy equation, first calculate the work done on the object using the force applied and the distance moved. Then, equate the work done to the change in kinetic energy of the object using the work-energy equation: Work = Change in kinetic energy = 0.5 * mass * (final velocity^2 - initial velocity^2). Finally, rearrange the equation to solve for displacement.
To calculate the change in velocity of an object, you subtract the initial velocity from the final velocity. The formula is: Change in velocity Final velocity - Initial velocity.
In the acceleration equation, the term vi represents the initial velocity, which is the velocity of an object at the beginning of the time period being considered. This term is subtracted from the final velocity (vf) to determine the change in velocity over time (t), which is then used to calculate the acceleration of the object.