From PV = nRT you solve for n (moles). Thus, n = PV/RT
From PV = nRT you solve for n (moles). Thus, n = PV/RT
From PV = nRT you solve for n (moles). Thus, n = PV/RT
From PV = nRT you solve for n (moles). Thus, n = PV/RT
From PV = nRT you solve for n (moles). Thus, n = PV/RT
From PV = nRT you solve for n (moles). Thus, n = PV/RT
From PV = nRT you solve for n (moles). Thus, n = PV/RT
To calculate the temperature of an unsaturated air parcel, you can use the ideal gas law equation: PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature. You would need to know the pressure, volume, and the number of moles of the air parcel to calculate the temperature.
This is the general law of gases:PV = nRT (n is the number of moles)
Use the ideal gas law, PV=nRT. P= pressure V= volume n= number of moles R= gas law constant T= temperature If you have P, V, R, T then you can solve for "n" to find the number of moles. There are a number of ways and variations that you can go about finding the number of moles, but all would involve the ideal gas law or a similar formula.
To determine the number of moles of MgO produced from 11.2 L of O2, you would first need to balance the chemical equation for the reaction involving MgO and O2. Then, using the ideal gas law and stoichiometry, you can calculate the moles of MgO produced.
The formula is: T = PV/nR, Where: * T is the temperature in kelvin * P is the pressure in atmospheres * n is the number of moles * R is the gas constant
To calculate the number of CO molecules, first convert the temperature to Kelvin (18°C + 273 = 291K). Then, use the ideal gas law equation PV = nRT to find the number of moles of CO present. Finally, since 1 mole of a gas contains 6.022 x 10^23 molecules, you can convert the moles of CO to molecules.