answersLogoWhite

0

When an electron absorbs a photon, the energy it gains can cause it to change orbitals. The result is ionization. The electron can then emit a photon in the process of "falling back" into its original orbit. Note that electrons won't absorb a photon that cannot give them enough energy to reach a higher orbital. There are no "half measures" in this aspect of quantum mechanics as electrons cannot be shifted "half way" to the next higher orbital. The proof of the pudding here is that we can use lasers of a given frequency to stimulate the electrons in orbit around given atoms. By knowing how much energy a certain electron needs to move to the next higher orbital, we can tune our laser to that photonic energy. Then when we point our laser at a bunch of these atoms, we'll see a bunch of electrons being kicked up to higher orbitals and then emitting photons to return to their previous orbital. There is a bit more to this, but the essentials are here, and are a first step to understanding the subtle ways photons and electrons interact.

What else can I help you with?

Continue Learning about Physics

How can a photon be destroyed or created?

A photon can be created when an electron transitions to a lower energy level and emits a photon. Conversely, a photon can be absorbed and "destroyed" when it is absorbed by an electron, causing the electron to transition to a higher energy level.


Can you explain why an electron's energy increases when it absorbs a photon and also describe what happens to the photon in this process?

When an electron absorbs a photon, its energy increases because the photon transfers its energy to the electron. The photon ceases to exist as a discrete particle and its energy is absorbed by the electron, causing it to move to a higher energy level.


What happens when an electron in a hydrogen atom moves from higher energy level to the lowest level?

When an electron in a hydrogen atom moves from a higher energy level to the lowest level, it emits a photon of energy equal to the difference in energy between the two levels. This photon is released as light, and the electron transitions to the ground state. This process is known as an electron transition or de-excitation.


What is the inverse of photoelectric effect?

The inverse of the photoelectric effect is known as the Compton effect, where a photon scatters off an electron, resulting in a change in the photon's wavelength and energy. This phenomenon occurs when a photon imparts part of its energy to an electron in a collision, causing the photon to lose energy and the electron to gain energy.


What happens when a photon of light hits photosystem 2?

When a photon of light hits photosystem 2, it excites an electron within the reaction center of the photosystem. This electron is then transferred along an electron transport chain, resulting in the generation of ATP and the splitting of water molecules to release oxygen as a byproduct.

Related Questions

How can a photon be destroyed or created?

A photon can be created when an electron transitions to a lower energy level and emits a photon. Conversely, a photon can be absorbed and "destroyed" when it is absorbed by an electron, causing the electron to transition to a higher energy level.


Can you explain why an electron's energy increases when it absorbs a photon and also describe what happens to the photon in this process?

When an electron absorbs a photon, its energy increases because the photon transfers its energy to the electron. The photon ceases to exist as a discrete particle and its energy is absorbed by the electron, causing it to move to a higher energy level.


What happens when an electron returns to its lower energy level?

When an electron returns to its lower energy level, it emits a photon of specific energy corresponding to the energy difference between the higher and lower levels. This process is called emission, and it results in the electron losing energy and returning to a more stable state.


When a electron returns to its stable or ground state is emits?

When an electron returns to its stable or ground state, it emits a photon of light. This process is known as emission and is responsible for various forms of light emission including fluorescence, phosphorescence, and luminescence. The energy of the emitted photon is equivalent to the energy difference between the higher energy state and the lower stable state of the electron.


What happens to an electron during an electron transition?

Drops to a lower energy level and emits one photon of light.


When the electron emits lights does the electron move up to a higher energy level or down to a lower energy level?

In the Bohr model of the atom, an electron emits a photon when it moves from a higher energy level to a lower energy level.


What happens to excess energy when the electron jumps from a higher energy orbit to a lower energy orbit in the hydrogen atom?

The electron emits a photon of light which we can see in a spectrograph as color. Four colors are normally seen in a hydrogen atom subjected to energy.


What happend when an electron in a hydrogen atom moves to a higher level?

It immediately falls back to the ground state and emits a photon of light.


What is the process in which an electron returns to a lower energy level and emits a photon?

This process is called "emission." When an electron transitions from a higher to a lower energy level within an atom, it releases a photon of light corresponding to the energy difference between the two levels. This emitted photon carries away the energy that the electron lost during the transition.


What happens when an electron in a hydrogen atom moves from higher energy level to the lowest level?

When an electron in a hydrogen atom moves from a higher energy level to the lowest level, it emits a photon of energy equal to the difference in energy between the two levels. This photon is released as light, and the electron transitions to the ground state. This process is known as an electron transition or de-excitation.


What is the difference between linear and non linear optics?

In the case of linear optical transitions, an electron absorbs a photon from the incoming light and makes a transition to the next higher unoccupied allowed state. When this electron relaxes it emits a photon of frequency less than or equal to the frequency of the incident light (Figure 1.3a). SHG on the other hand is a two-photon process where this excited electron absorbs another photon of same frequency and makes a transition to reach another allowed state at higher energy. This electron when falling back to its original 39 state emits a photon of a frequency which is two times that of the incident light (Figure 1.3b). This results in the frequency doubling in the output.


When an electron drops from a higher energy state to a lower energy state?

When an electron drops from a higher energy state to a lower energy state, it emits electromagnetic radiation in the form of a photon. This process is known as atomic emission, and the energy of the emitted photon corresponds to the energy difference between the two electron states.