answersLogoWhite

0

The energy level from the higher energy level to the lowest, starts to decrease.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Physics

What is the energy of the electron in a hydrogen atom in an excited state of 5s1 when considering its configuration?

The energy of the electron in a hydrogen atom in an excited state of 5s1 is higher than in the ground state. This is due to the electron being in a higher energy level, specifically the 5s orbital. The configuration of the electron in this excited state indicates that it is in the fifth energy level and occupies the s subshell.


How do you explain the diagram that shows 4 energy levels of hydrogen - 1 at the bottom 4 at the top - the values are n4-0.85eV n3-1.51eV n2-3.4eV n1-13.6eV?

The diagram shows the ionization energies of hydrogen. The ionization energy for a ground-state electron in hydrogen is 13.6eV. Let's jump. An electron orbits an atom of hydrogen in as low an energy level as possible. That's the ground state of hydrogen. To tear that electron away, it takes some amount of energy. In this case, it takes 13.6eV to strip off that electron. But what if the electron is in the next higher allowable energy level because the gas it hot? In that case, it takes less energy to tear that electron away because you've got a "head start" owing to the fact that the electron is in a higher orbital than the ground state. And what if it's in the next higher allowable energy level? Or the next? Less and less energy is required to strip off the electron as it moves to higher energy levels. These are the ionization energies of hydrogen. These energy levels are specific to hydrogen. Each other element will have a different set if ionization energies associated with it. And with atoms with many electrons and complex electron structures, the problem can quickly become very complex.


What happens when an atom absorbs ultraviolet energy and an electron is involved?

When an atom absorbs ultraviolet energy and an electron is involved, the electron can move to a higher energy level or be ejected from the atom, leading to the atom becoming ionized or excited.


Can you explain why an electron's energy increases when it absorbs a photon and also describe what happens to the photon in this process?

When an electron absorbs a photon, its energy increases because the photon transfers its energy to the electron. The photon ceases to exist as a discrete particle and its energy is absorbed by the electron, causing it to move to a higher energy level.


Does an electron absorb energy and make a transition to a higher energy orbital when the solution it is in is being heated?

Yes, when an electron absorbs energy (e.g., from heating the solution), it can transition to a higher energy orbital. This is because the extra energy provides the electron with the necessary boost to move to a higher energy state.

Related Questions

What happens when a electron moves to higher energy level?

The electron gains energy.


What happens when an electron moves to a higher level?

The electron gains energy.


What is second ionization energy of hydrogen?

hydrogen has only one electron so after you remove that electron you do not have any electrons left to remove so hydrogen doesn't have a 2nd ionization energy. hydrogen has 1 proton and 1 electron.


What happens to excess energy when the electron jumps from a higher energy orbit to a lower energy orbit in the hydrogen atom?

The electron emits a photon of light which we can see in a spectrograph as color. Four colors are normally seen in a hydrogen atom subjected to energy.


What is the energy of the electron in a hydrogen atom in an excited state of 5s1 when considering its configuration?

The energy of the electron in a hydrogen atom in an excited state of 5s1 is higher than in the ground state. This is due to the electron being in a higher energy level, specifically the 5s orbital. The configuration of the electron in this excited state indicates that it is in the fifth energy level and occupies the s subshell.


How do you explain the diagram that shows 4 energy levels of hydrogen - 1 at the bottom 4 at the top - the values are n4-0.85eV n3-1.51eV n2-3.4eV n1-13.6eV?

The diagram shows the ionization energies of hydrogen. The ionization energy for a ground-state electron in hydrogen is 13.6eV. Let's jump. An electron orbits an atom of hydrogen in as low an energy level as possible. That's the ground state of hydrogen. To tear that electron away, it takes some amount of energy. In this case, it takes 13.6eV to strip off that electron. But what if the electron is in the next higher allowable energy level because the gas it hot? In that case, it takes less energy to tear that electron away because you've got a "head start" owing to the fact that the electron is in a higher orbital than the ground state. And what if it's in the next higher allowable energy level? Or the next? Less and less energy is required to strip off the electron as it moves to higher energy levels. These are the ionization energies of hydrogen. These energy levels are specific to hydrogen. Each other element will have a different set if ionization energies associated with it. And with atoms with many electrons and complex electron structures, the problem can quickly become very complex.


What happens when an electron moves higher energy level?

It gains energy in a quantity amount or whatever it says


What is the difference between excited hydrogen atom and any other atom?

Hydrogen atom = 1 proton 1 electron Hydrogen's 1 electron occupies the lowest energy level, 1s orbital. The atom is therefore in its "ground state". When a photon of correct frequency "collides" with a electron in hydrogen's 1s orbital the energy contained in the photon is transferred to the electron. The electron then gets added energy, so it is at a higher energy state. When it reaches this higher energy state the electron jumps to the next energy level and there it starts its new orbit. Hydrogen atom is now "excited" For any other atoms it is the same thing because all atoms can undergo excitation. The only difference between hydrogen's 1 electron and other atom's many electrons is WHICH ELECTRON will be "excited"


When radiation is absorbed by a hydrogen electron the hydrogen atom changes its ground state to?

When a hydrogen electron absorbs radiation, it moves to an excited state. The electron jumps to a higher energy level, causing the hydrogen atom to change its ground state to an excited state.


According to Bohr's model of the hydrogen atom how is hydrogen's emission spectrum produced?

In Bohr's model of the hydrogen atom, hydrogen's emission spectrum is produced when electrons jump between different energy levels within the atom. When an electron moves from a higher energy level to a lower one, it releases energy in the form of light, which is observed as distinct spectral lines in the emission spectrum. The energy of the emitted light corresponds to the energy difference between the initial and final energy levels of the electron.


What happens if an atom is supplied with excess energy?

An electron may change to an excited state, and an electron may move to a higher orbit.


What happened to the energyof an electron as it goes farther from the nucleus?

if an electron gains enough energy it jumps to a higher energy level. when this happens the atom is in an "excited" state.