answersLogoWhite

0


Best Answer

The second stage of photosynthesis, which takes place in the stroma of the chloroplast, can occur without the presence of sunlight. In this stage, known as the Calvin Cycle, carbon molecules from CO2 are fixed into glucose (C6H12O2). The reactions of the Calvin Cycle is as follows:

1. A five-carbon sugar molecule called ribulose bisphosphate, or RuBP, is the acceptor that binds CO2 dissolved in the stroma. This process, called CO2 fixation, is catalyzed by the enzyme RuBP carboxylase, forming an unstable six-carbon molecule. This molecule quickly breaks down to give two molecules of the three-carbon 3-phosphoglycerate (3PG), also called phosphoglyceric acid (PGA).

2. The two 3PG molecules are converted into glyceraldehyde 3-phosphate (G3P, a.k.a. phosphoglyceraldehyde, PGAL) molecules, a three-carbon sugar phosphate, by adding a high-energy phosphate group from ATP, then breaking the phosphate bond and adding hydrogen from NADPH + H+.

Three turns of the cycle, using three molecules of CO2, produces six molecules of G3P. However, only one of the six molecules exits the cycle as an output, while the remaining five enter a complex process that regenerates more RuBP to continue the cycle. Two molecules of G3P, produced by a total of six turns of the cycle, combine to form one molecule of glucose.

User Avatar

Wiki User

10y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

13y ago

Combines with Ribose Bis-Phosphate under enyme rubisco.

This answer is:
User Avatar

User Avatar

Wiki User

11y ago

It becomes a carbohydrate

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What happens to when Co2 moves into the stroma?
Write your answer...
Submit
Still have questions?
magnify glass
imp