tribromophenol is formed.
tribromophenol is formed.
Phenol + 3Br2 = 2,4,6-tribromophenol + 3HBr Everything you need to know :) http://www.chemguide.co.uk/organicprops/phenol/ring.html
The ferric chloride test: Ethanol does not react with ferric chloride, while phenol forms a purple color when mixed with ferric chloride. The bromine water test: Ethanol does not react with bromine water, while phenol decolorizes bromine water due to its reducing properties.
The reaction between phenol and bromine water results in the substitution of a hydrogen atom on the benzene ring with a bromine atom. This forms bromophenol as the product. The reaction is a bromination reaction and the presence of phenol's hydroxyl group activates the benzene ring towards electrophilic substitution.
When bromine water is added to paraffin, no visible reaction occurs. Paraffin is a non-reactive hydrocarbon compound, so it does not undergo a chemical reaction with bromine. The bromine remains as a colored solution with no change in the paraffin.
Bromine water reacts with alkenes through an electrophilic addition reaction where the pi bond of the alkene breaks, and bromine atoms are added to the carbon atoms. This reaction results in the decolorization of the bromine water, changing it from orange to colorless.
the critical solution temperature for phenol water system increases
Probable tetrabromoethane is formed.
The bromine water turns from orange to colourless, as it is breaking the double bonds. When the oil becomes saturated, any more bromine water that is added will not turn colourless.
When bromine water is added to iron sulfate, the bromine oxidizes the iron(II) ions to iron(III) ions, forming a brown precipitate of iron(III) bromide. This reaction is a redox reaction, where the bromine is reduced and the iron is oxidized.
When bromine water is added to oil, if the oil contains unsaturated bonds, the reddish-brown color of the bromine water will be reduced as the bromine molecules add across the double bonds in a chemical reaction called bromination. This reaction is used to test for the presence of unsaturation in organic compounds like alkenes or alkynes.
Bromine water is originally orange-brown in color. When propene is added to bromine water, the orange-brown color fades as the bromine molecules react with the carbon-carbon double bond in propene. This reaction leads to the decolorization of the bromine water to a colorless solution.