Hydrogen ions are pumped across the mitochondria's inner membrane producing a concentration gradient
They begin to electrolyze, a term used for giving off static charge.
Hydrogen ions are pumped across the mitochondria's inner membrane producing a concentration gradient
they move through an electron transport chain to photosystem 1
The electrons are transported through a series of carrier proteins via simultaneous oxidation-reduction reactions. The carriers harvest energy from these electrons to pump H+ ions across the inner mitochondrial membrane. When the electrons reach the very end of the chain i.e. complex 4, they are transferred to Oxygen atoms to form O2- ions. O2- ions then combine with H+ ions in the mitochondrial matrix to form H2O.
Electronic transport chain
pie
The electron transport chain happens in the cristae membrane inside the mitochondria.
NADH can lose an electron and become NAD. The formation of NAD is also associated with oxidative stress from the formation of OH- as it leaks from the electron transport chain.
Oxygen (O2) is the electron acceptor in the Electron Transport Chain. "The electrons are passed to O2, the final electron acceptor of the electron transport system. This oxygen, now negatively charged because it has acquired additional electrons, combines with H+ ions, which are positively charged because they donated electrons at the beginning of the electron transport system, to form H2O." (Sherwood 36) References: Sherwood, Lauralee. Human Physiology: from Cells to Systems. 7th ed. Australia: Brooks/Cole, Cengage Learning, 2010. Print.
Hydrogen ions are pumped across the mitochondria's inner membrane producing a concentration gradient
During electron transport in the mitochondrion, protons (H+) accumulate in the intermembrane space. This happens as electrons are transferred through the electron transport chain, creating a proton gradient across the inner mitochondrial membrane. This gradient of protons is later utilized by ATP synthase to generate ATP through oxidative phosphorylation.
Photosystem's electron travel through the electron transport chain(etc) where ATP is produced and then back to the photosystem. In non-cyclic photophosphorylation, Photosystem II electron then is absorbed by photosystem I, photosystem I electron used to form NADPH and photosystem II gets its electron from photolysis of water. For you unfortunate children using Novanet: They move through an electron transport chain to photosystem 1.