The resistive element is made from a mixture of finely ground (powdered) carbon and an insulating material (usually ceramic). A resin holds the mixture together. The resistance is determined by the ratio of the fill material (the powdered ceramic) to the carbon. Higher concentrations of carbon, a weak conductor, result in lower resistance. Carbon composition resistors were commonly used in the 1960s and earlier, but are not so popular for general use now as other types have better specifications, such as tolerance, voltage dependence, and stress (carbon composition resistors will change value when stressed with over-voltages). Moreover, if internal moisture content (from exposure for some length of time to a humid environment) is significant, soldering heat will create a non-reversible change in resistance value. Carbon composition resistors have poor stability with time and were consequently factory sorted to, at best, only 5% tolerance.[4] These resistors, however, if never subjected to overvoltage nor overheating were remarkably reliable considering the component's size [5]
They are still available, but comparatively quite costly. Values ranged from fractions of an ohm to 22 megohms. Because of the high price, these resistors are no longer used in most applications. However, carbonresistors are used in power supplies and welding controls.[5]
no it means it was an incomplete combustion causing pure Carbon (carbon monoxide or sut).
Carbon dioxide is formed by the complete combustion of carbon itself or organic compounds.
Yes, ash is a byproduct of combustion processes and can contain carbon.
Carbon dioxide is a product of combustion. It cannot undergo combustion.
no not at all
carbon monoxide and carbon soot
carbon dioxide
Complete combustion produces carbon dioxide. Incomplete combustion produces carbon monoxide.
combustion is the process of burning something. It adds a lot more carbon to the air.
carbon
A necessary product in a combustion reaction is carbon dioxide (CO₂). During combustion, a fuel (typically containing carbon and hydrogen) reacts with oxygen (O₂) to produce energy, water (H₂O), and carbon dioxide if the combustion is complete. Incomplete combustion can also produce carbon monoxide (CO) and other byproducts, but CO₂ is a key indicator of complete combustion.
It does not support combustion...