answersLogoWhite

0


Best Answer

A parallel resonant circuit has at its heart an inductorand a capacitor. These are the two parallel components. They each react to voltage and current 180 degrees out of phase with each other. When we "hit" this circuit, called a parallel tank circuit, or just a tank, with voltage, one component is "putting energy into the circuit" while the other one is "storing it up" and then the two components switch roles. The result is that the tank will oscillate, and the frequency of oscillation will be determined by the value of the capacitor and the inductor.

User Avatar

Ole Champlin

Lvl 10
2y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

15y ago

If you are asking for the resonant frequency of a parallel tuned LC circuit, it is given by f = ((LC)0.5 2pi )-1 This looks a bit dense, but it is not possible to write a fraction in these answers. In words: f = one upon ( two pi root LC) . Units are C(Farad), L(Henry) and f(Hertz).

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Parallel tuned circuit in resonance frequency?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

When a parallel LC circuit is tuned to resonance the tank circuit draws?

very low current


Give the derivation of Single tuned and double-tuned circuit?

The circuit has one inductor and capacitor connected in such a way that it produce the resonance condition for only one frequency. on the other hand for double tuned circuit it has more number of reactive elements and it has two tuning frequency. The single tuned circuit is of interest when the poles are imaginary, and rest of the two cases are not more interest. w=wn the time it produce the resonance and the damping factor zeta is zero and the circuit is in undamped condition.


When a parallel LC circuit is tuned to resonance will the current be at a maximum or a minimum?

Inside the circuit loop between the inductor and capacitor the current will be at maximum. Outside the circuit the current through the LC tank circuit will be at minimum. It depends on where you are measuring it.


What is resonance frequency in electronics?

The frequency at which the impedance of the circuit becomes zero is known as resonance frequency. Actually at resonance resistance only presence in the circuit. That means the impedance of the inductor and capacitor will automatically vanish.


Why parallel resonance is termed as rejecter circuit?

THE PARALLEL rlc CIRCUIT IS CALLED A REJECTOR CIRCUIT BECAUSE IT REJECTS DOWN THE CURRENT. THE REASON IS AT RESONANCE THE IMPEDENCE OF THE CAPACITOR BECOMES EQUAL TO THAT OF THE INDUCTOR SO NO CURRENT FLOWS. AT LOW FREQUENCY THE CAPACITIVE REACTANCE IS LOW SO ALL THE CURRENT FLOWS THROUGH THE INDUCTOR AND WHEN THE FREQUENCY IS HIGH ALL THE CURRENT WILL FLOW THROUGH THE CAPACITOR BECAUSE AT THAT POINT THE REACTANCE OF THE CAPACITOR IS LOW. SO WE OBTAIN A V-SHAPED GRAPH WITH THE PEAK OF V INDICATING THE REJECTION OF CURRENT IN PARALLEL R-L-C CIRCUIT CIRCUIT,AT RESONANCE,IMPEDANCE IS MAXIMUM AND CURRENT IS MINIMUM.HENCE, SUCH A CIRCUIT WHEN USED IN RADIO STATIONS IS KNOWN AS REJECTOR CIRCUIT BECAUSE IT REJECTS OR TAKES MINIMUM CURRENT OF THAT DESIRED FREQUENCY TO WHICH IT RESONATES.(THIS RESONANCE IS OFTEN REFERRED TO AS CURRENT RESONANCE BECAUSE THE CURRENT CIRCULATING BETWEEN THE TWO BRANCHES IS MANY TIMES GREATER THAN THE LINE CURRENT TAKEN FROM THE SUPPLY.THE PHENOMENON OF PARALLEL RESONANCE IS OF GREAT PRACTICAL IMPORTANCE BECAUSE IT FORMS THE BASIS OF TUNED CIRCUITS IN ELECTRONICS.)A PARALLEL R-L-C CIRCUIT HAS THE PROPERTY OF SELECTIVITY I.E.IT CAN SELECT THE DESIRED FREQUENCY FOR AMPLIFICATION OUT OF A LARGE NUMBER OF FREQUENCIES SIMULTANEOUSLY IMPRESSED UPON IT.FOR INSTANCE IF A MIXTURE OF FREQUENCIES INCLUDING RESONANT FREQUENCY IS FED TO THE INPUT THEN MAXIMUM AMPLIFICATION OCCURS FOR THE RESONANT FREQUENCY.FOR ALL OTHER FREQUENCIES ,THE CIRCUIT OFFERS VERY LOW IMPEDANCE AND HENCE THESE ARE AMPLIFIED TO A LESSER EXTENT AND MAY BE THOUGHT AS REJECTED BY THE CIRCUIT.

Related questions

When a parallel LC circuit is tuned to resonance the tank circuit draws?

very low current


When L is doubled and C is halved the resonance frequency of series tuned circuit becomes?

The same


Give the derivation of Single tuned and double-tuned circuit?

The circuit has one inductor and capacitor connected in such a way that it produce the resonance condition for only one frequency. on the other hand for double tuned circuit it has more number of reactive elements and it has two tuning frequency. The single tuned circuit is of interest when the poles are imaginary, and rest of the two cases are not more interest. w=wn the time it produce the resonance and the damping factor zeta is zero and the circuit is in undamped condition.


Circuit for single tuned amplifier?

A single tuned amplifier basically consists of a tuned circuit (which may consist of an IFT or a parallel tuned LC circuit) connected to the collector of an amplifier circuit (in Common Emitter configuration). The tuned circuit is designed to get a resonant frequency equal to the incoming frequency signal that arrives at the base. The Single Tuned Amplifier gives maximum amplification to that particular incoming frequency which matches the resonant frequency of the tuned circuit and attenuates all other frequencies. Thus it gives sharp selectivity with a high Q-factor.


What does a resonators do in a electric circuit?

A resonator is a circuit that responds to a narrow range of frequencies. A typical resonator is a tuned circuit containing an inductor and a capacitor in series or parallel. A series connected tuned circuit has zero impedance at the resonant frequency, while a parallel tuned circuit has infinite impedance at the resonant frequency. The resonant frequency in both cases depends on the inductance times the capacitance: F = 1 / (2.pi.sqrt(LC)) If the inductance is in Henrys and the capacitance in Farads, the answer is in Hz.


What would be the purpose of connecting a parallel-tuned circuit into an antenna circuit?

The parallel-tuned filter in antenna circuit rejects only the undesired frequencies.


When a parallel LC circuit is tuned to resonance will the current be at a maximum or a minimum?

Inside the circuit loop between the inductor and capacitor the current will be at maximum. Outside the circuit the current through the LC tank circuit will be at minimum. It depends on where you are measuring it.


What is resonance frequency in electronics?

The frequency at which the impedance of the circuit becomes zero is known as resonance frequency. Actually at resonance resistance only presence in the circuit. That means the impedance of the inductor and capacitor will automatically vanish.


Why parallel resonance is termed as rejecter circuit?

THE PARALLEL rlc CIRCUIT IS CALLED A REJECTOR CIRCUIT BECAUSE IT REJECTS DOWN THE CURRENT. THE REASON IS AT RESONANCE THE IMPEDENCE OF THE CAPACITOR BECOMES EQUAL TO THAT OF THE INDUCTOR SO NO CURRENT FLOWS. AT LOW FREQUENCY THE CAPACITIVE REACTANCE IS LOW SO ALL THE CURRENT FLOWS THROUGH THE INDUCTOR AND WHEN THE FREQUENCY IS HIGH ALL THE CURRENT WILL FLOW THROUGH THE CAPACITOR BECAUSE AT THAT POINT THE REACTANCE OF THE CAPACITOR IS LOW. SO WE OBTAIN A V-SHAPED GRAPH WITH THE PEAK OF V INDICATING THE REJECTION OF CURRENT IN PARALLEL R-L-C CIRCUIT CIRCUIT,AT RESONANCE,IMPEDANCE IS MAXIMUM AND CURRENT IS MINIMUM.HENCE, SUCH A CIRCUIT WHEN USED IN RADIO STATIONS IS KNOWN AS REJECTOR CIRCUIT BECAUSE IT REJECTS OR TAKES MINIMUM CURRENT OF THAT DESIRED FREQUENCY TO WHICH IT RESONATES.(THIS RESONANCE IS OFTEN REFERRED TO AS CURRENT RESONANCE BECAUSE THE CURRENT CIRCULATING BETWEEN THE TWO BRANCHES IS MANY TIMES GREATER THAN THE LINE CURRENT TAKEN FROM THE SUPPLY.THE PHENOMENON OF PARALLEL RESONANCE IS OF GREAT PRACTICAL IMPORTANCE BECAUSE IT FORMS THE BASIS OF TUNED CIRCUITS IN ELECTRONICS.)A PARALLEL R-L-C CIRCUIT HAS THE PROPERTY OF SELECTIVITY I.E.IT CAN SELECT THE DESIRED FREQUENCY FOR AMPLIFICATION OUT OF A LARGE NUMBER OF FREQUENCIES SIMULTANEOUSLY IMPRESSED UPON IT.FOR INSTANCE IF A MIXTURE OF FREQUENCIES INCLUDING RESONANT FREQUENCY IS FED TO THE INPUT THEN MAXIMUM AMPLIFICATION OCCURS FOR THE RESONANT FREQUENCY.FOR ALL OTHER FREQUENCIES ,THE CIRCUIT OFFERS VERY LOW IMPEDANCE AND HENCE THESE ARE AMPLIFIED TO A LESSER EXTENT AND MAY BE THOUGHT AS REJECTED BY THE CIRCUIT.


Are LC circuits and tuned circuits same thing?

a "LC circuit at resonance" and tuned circuits are the same


How do you decrease resonant frequency of a series-tuned circuit?

To decrease the resonant frequency of any tuned circuit, increase the inductance and/or increase the capacitance.


Why you use parallel resonance circuit instead of series resonance circuit in tuned voltage amplifier?

At resonance...a parallel tank circuit matches the applied sine voltage so close that there is almost 0 current flow from the source...i.e., max impedance at resonance...the capacitor and inductor are swapping energy with each other in tune with the source... visualize it...in order to have 0 current flow for an incoming varying voltage...that would mean that the tank voltage would be varying exactly at the same frequency and voltage! Thus...you have effectively "tuned" into a voltage which would be critical in 'tuned' voltage amplifier... A series resonant circuit does not tune into a voltage...in fact at resonance the voltage across the inductor capacitor will be 0!...a short or minimum impedance condition Of course my discussion assumed ideal components...in the real world there will be 'stray' resistances which will alter the results in magnitude to the size of the resistance... Hope this helps