answersLogoWhite

0


Best Answer

The easiest circuit that does not obey Ohm's law is a circuit that has a resistance that depends on temperature. For example, if you take a light bulb and draw a current-vs-voltage, you see that in the beginning (under low voltage) the graph is NOT a straight line, but under high voltage the graph is linear. This is because the resistance depends on temperature. the equation V=IR isn't consistent with the graph's shape.

User Avatar

Wiki User

15y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is an example of a circuit that doesnt obey Ohms Law?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Do pure semiconductor obey ohms law?

No semiconductor's do not obey ohm's laws.


When does a thermostor obey ohm's law?

I hope you mean the thermistor. If so,well it does not obey Ohms law. When current flows through the thermistor its temperature start increasing which reduces the resistance of the thermistor. A reduction in resistance at the same supply voltage will cause the current to increase. Thus it's not obeying Ohms law.


Why does the filament lamp does not follow Ohms Law give any example?

A filament's resistance value varies with temperature. When directly measuring resistance, the filament is off, and at or near room temperature. When the circuit is turned on to measure voltage and current, the filament's temperature will increase and the resistance value will increase. This makes it appear as though Ohm's law is wrong.AnswerThere is no difficulty; your experiment will simply prove that the filament of the lamp doesn't obey Ohm's Law.When you plot the results of current against voltage for a lamp's filament, obtained from your experiment, the result will be a curved line, indicating that the current is notproportional to voltage (due to a changing resistance). This shows that the filament doesn't obey Ohm's Law. To obey Ohm's Law, the result must be a straight-line graph.Although the resistance of the lamp can be found at any point along the curve from the ratio of voltage to current (i.e. R = V/I) at that particular point, the lamp does not obey Ohm's Law. Ohm's Law only applies when the ratio of voltage to current remains constant throughout the experiment.So no difficulty has arisen with your experiment, you have simply proved that Ohm's Law doesn't apply to the lamp filament. Believe your results!!


Is ohms law applicable to filament?

Absolutely not! A tungsten filament is an example of a non-linear or non-ohmic material, and it does not obey Ohm's Law. Ohm's Law is a law of constant proportionality; in other words, for it to apply, the ratio of voltage to current must be constant over a wide range of voltages. Increasing the voltage of a tungsten filament to its rated voltage causes its resistance to increase around 15 - 18 times, compared with its 'cold' resistance. Therefore, the ratio of voltage to current changes significantly as the applied voltage changes -so it does not obey Ohm's Law.However, the ratio of voltage to current will always tell you what the resistance happens to be for any particular ratio. Since, for tungsten, because the ratio increases as the voltage increase, the resistance changes too.To summarise, for Ohm's Law to apply, there MUST be a linear relationship between voltage and current; with tungsten, the relationship is a curved line and, so, it is non-linear and does not obey Ohm's Law.


What difficulty will Aries while testing wheather the filament of light bulb obeys ohms law?

If you plot a graph of current against a range of voltages applied to an incandescent lamp, the result will be a curvedline. This tells us that the current is not proportional to the voltage and, so, the lamp does not obey Ohm's Law.However, the ratio of voltage to current will indicate the resistance for that particular ratio.

Related questions

Do pure semiconductor obey ohms law?

No semiconductor's do not obey ohm's laws.


In a series circuit each device that is added to the circuit decreases the what?

Depends on the device. If it is a resistor and you have a fixed voltage then the circuit will obey Ohms law. Voltage = Current x Resistance. So if R increases by adding more resistors in series and the voltage is constant, the current will decrease.


According to ohms law what is the resistance of a light if the voltage is 9.0 volts and the current is 0.30 amps?

30 ohmsAnswerAn incandescent lamp doesn't obey Ohm's Law, because the ratio of voltage to current changes as the supply voltage is varied. All you can say is that, when the applied voltage is 9.0 V, then the resistance will happen to be 30 ohms. If you change the applied voltage to some other value, then you will find the resistance will have changed too. Ohm's Law isn't a universal law; in fact, most materials and circuit devices do not obey Ohm's Law, and tungsten, from which lamp filaments are manufactured, is an example of a metal that does not obey Ohm's Law (we call them 'non-linear' or 'non-ohmic')


When does a thermostor obey ohm's law?

I hope you mean the thermistor. If so,well it does not obey Ohms law. When current flows through the thermistor its temperature start increasing which reduces the resistance of the thermistor. A reduction in resistance at the same supply voltage will cause the current to increase. Thus it's not obeying Ohms law.


What is the verb of obey?

Obey is already a verb. For example "to obey someone or something" is an action, therefore it is a verb.


What the verb of obey?

Obey is already a verb. For example "to obey someone or something" is an action, therefore it is a verb.


Why does ohm's matter with speakers?

the vibration produced in the coil of a speaker is due to current passing through it hence it obey ohms law


How vacuum tubes do not obey ohms law in circuit design?

In point of fact, vacuum tubes do obey Ohm's law. Everything electrical obeys Ohm's law. The reason vacuum tubes don't appear to obey the law is that not every consideration takes into account the fact that vacuum tubs have dynamicresistance. Ohm's law, as applied to "pure" ohmic resistors, requires constant resistance, which no material, no matter how good, exhibits. In the real world, you have to consider that resistance can vary along with voltage and current, and this "complicates" things.


Do transformers obey Ohm's Law?

Yes, they do. The confusion for most people comes from the fact that ohm's law says that when voltage goes up, current goes up; but conservation of power says that when voltage goes up, current goes down. The reason it still applies is that a transformer divides a single circuit into what are actually two electrically-separate circuits. Ohm's law applies to each sub-circuit individually, while conservation of power must hold for the entire circuit as a whole. A more in-depth explanation can be found on this page: http://www.blueraja.com/blog/194/do-transformers-obey-ohms-law


According to Ohm's law what is the resistance of a light if the voltage is 9.0 volts and the current is 0.30 amps?

30 ohmsAnswerAn incandescent lamp doesn't obey Ohm's Law, because the ratio of voltage to current changes as the supply voltage is varied. All you can say is that, when the applied voltage is 9.0 V, then the resistance will happen to be 30 ohms. If you change the applied voltage to some other value, then you will find the resistance will have changed too. Ohm's Law isn't a universal law; in fact, most materials and circuit devices do not obey Ohm's Law, and tungsten, from which lamp filaments are manufactured, is an example of a metal that does not obey Ohm's Law (we call them 'non-linear' or 'non-ohmic')


How do you plot ohms law graph of potential difference versus current?

The current is represented by the horizontal (x) axis, and the potential difference is represented by the vertical (y) axis.If the resulting graph is a straight line, then it confirms that the circuit is obeying Ohm's Law. If the resulting graph is a curve, then the circuit does not obey Ohm's Law.The gradient at any point along of the resulting line represents the resistance of the load for that ratio of voltage to current.


Application of other conductors which does not obey ohms law in a circuit?

Ohms law is a law; all conductors must obey it. A simple form of ohm's law is V = I / R. The only control a conductor has on this equation is in the 'R'. Super conductors, for example, have a resistance that approaches zero at certain termperatures. This does not mean that they break the law, though.AnswerOhm's Law describes a linear relationship between the potential difference across a conductor; it has nothing to do with the relationship between potential difference, current, and resistance.The equation R = E/I is derived from the definition of the ohm, and not from Ohm's Law. This equation applies whether Ohm's Law is obeyed or not.In fact, relatively few conductors obey Ohm's Law. Those that do are termed 'ohmic' or 'linear' conductors; those that don't are termed 'non-ohmic' or 'non-linear'.Simply put, if the graph representing current plotted against a varying potential difference is not linear, then it ain't obeying Ohm's Law!