In gamma rays atom becomes more stable by emitting excess energy in the form of gamma radiation.
Gamma rays are part of the electromagnetic spectrum.
Gamma emission is a type of decay in which a nucleus releases high-energy gamma photons without changing its atomic number or mass number. This is different from alpha and beta decay, which involve the emission of particles from the nucleus. Gamma emission is a form of electromagnetic radiation, while alpha and beta decays involve the emission of particles with mass.
Gamma decay involves the emission of a gamma ray, which is a high-energy photon with no charge and no mass.
Gamma rays .
gamma
The four types of nuclear decay are alpha decay, beta decay, gamma decay, and neutron decay. Alpha decay involves the emission of an alpha particle, beta decay involves the emission of beta particles (either electrons or positrons), gamma decay involves the emission of gamma rays, and neutron decay involves the emission of a neutron.
Alpha emission is a 4helium nucleus, which behaves like a particle. Beta emission is an electron, which behaves like a particle. Gamma emission is a photon, which behaves like a particle. Experiments can also be set up to show their wavelike properties (for alpha, beta, and gamma radiation).
Gamma emission is best represented by the release of high-energy electromagnetic radiation from the nucleus of an atom. This type of radiation has the shortest wavelength and highest frequency in the electromagnetic spectrum, making it the most penetrating form of radiation. Gamma emission commonly occurs during radioactive decay processes.
gamma
emission of alpha, beta or gamma particles
Radioactivity is the term defined as the emission of energy from subatomic particles.
From weakest to strongest decay, the order is: Gamma decay - involves the emission of high-energy photons. Beta decay - involves the emission of beta particles (electrons or positrons). Alpha decay - involves the emission of alpha particles (helium nuclei).
Gamma radiation has the greatest penetrating power among radioactive emissions. It can pass through various materials, including thick layers of lead and concrete. However, it can be shielded by materials with high atomic numbers, such as dense metals like lead or uranium.