it conserves mass
The law of conservation of mass, which states that in a closed system, mass is neither created nor destroyed, it can only change form. This means that in a chemical reaction that takes place in a closed system, the mass of the reactants equals the mass of the products.
The law that states that mass can neither be created nor destroyed in a chemical reaction is the Law of Conservation of Mass, also known as the Law of Mass Conservation. This principle was first formulated by Antoine Lavoisier in the late 18th century and is a fundamental concept in chemistry.
The Law of conservation of Energy applies to mass as mass is a form of energy, E=mc2.
The law that states mass cannot be created or destroyed in chemical or physical changes is the Law of Conservation of Mass, also known as the Principle of Mass Conservation. This law implies that in a closed system, the total mass remains constant before and after any chemical or physical process, even if the substances undergo a change in form or state.
This is the law of conservation of mass.
Law of Conservation of Energy
The differential equation for a spring-mass system attached to one end of a seesaw can be derived from Newton's second law. If the mass ( m ) is attached to a spring with spring constant ( k ), the equation of motion can be expressed as ( m\frac{d^2x}{dt^2} + kx = 0 ), where ( x ) is the displacement from the equilibrium position. Additionally, if the seesaw is rotating, the dynamics will involve torque and may require considering angular motion, but the basic oscillatory behavior remains governed by the spring-mass dynamics. The overall system would likely result in a coupled differential equation incorporating both linear and rotational dynamics.
law of conservation of mass states that mass can neither be created nor destroyed in a chemical reaction.
law of conservation of mass.
the law of conservation of mass
law of conservation of energy and mass