Well, a satellite revolves about 80 times faster than the probe. The probe masters different situations which cause orbital problems. Escape velocity doesn't have the power that regards to the probe. Scientists assume that the satellite has the power, but others don't. The probe connects to orbital velocity and has the power to control it.
Doubling the mass of a satellite would result in no change in its orbital velocity. This is because the orbital velocity of a satellite only depends on the mass of the planet it is orbiting and the radius of its orbit, but not on the satellite's own mass.
Escape velocity is the velocity that an object needs in order to reach infinite distance, wherein the force will equal to zero. Orbital velocity is the velocity of an object so it can stay in orbit.
it affect the path and orbital velocity of satellite due to gravitation pull
The tangential velocity of an Earth satellite is its velocity perpendicular to the radius vector pointing towards the center of the Earth. It represents the speed at which the satellite is moving along its orbital path. This velocity is crucial for maintaining the satellite's orbit and is calculated using the satellite's distance from the center of the Earth and gravitational force acting upon it.
Balance of force of gravity by centripetal forceYes, for any given orbital radius (r) only one velocity will give stable orbit, this is called the critical velocity.Pick your orbital radius and satellite mass (m)Use Gmm / r2 to calculate gravitational force (f),then find velocity from : v = sq root ( (r * f ) / m)
You can calculate this with Kepler's Third Law. "The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit." This is valid for other orbiting objects; in this case you can replace "planet" with "satellite". Just assume, for simplicity, that the satellite orbits Earth in a circular orbit - in this case, the "semi-major axis" is equal to the distance from Earth's center. For your calculations, remember also that if the radius is doubled, the total distance the satellite travels is also doubled.
Sub-orbital space flight reaches space while low orbital spaceflight attain sufficient velocity to go to space.
Probes are unmanned spacecraft that can be sent to explore celestial bodies within our solar system, typically requiring lower orbital and escape velocities compared to satellites. Satellites are objects that orbit a planet or celestial body, including artificial satellites launched into orbit around Earth. Satellites often require higher orbital and escape velocities due to their continuous or prolonged presence in orbit.
Orbital Velocity is calculated in m/s where as angular velocity is calculated in rad/s.. Answer is very clear.. angular velocity is calculated when body is rotating around a axis and a reference point is needed to calculate it.. where as orbital velocity is calculated when body is moving around a bado in circular path, nt around itself... e.g. Earth rotates around so it have angular velocity .. it also rotates around sun in orbit so it has Orbital velocity also :)
Satellite orbital spacing refers to the distance between different satellites in orbit around the Earth. This spacing is carefully planned to prevent collisions and to optimize coverage, communication, and other functions of the satellite network. Satellite operators coordinate with each other and regulatory bodies to ensure safe and efficient use of orbital space.
Pluto is the planet that has the lowest orbital velocity relative to that of the earth. The orbital velocity of Pluto is 0.159.
With satellites, the object is not to escape Earth's gravity, but to balance it. Orbital velocity is the velocity needed to achieve balance between gravity's pull on the satellite and the inertia of the satellite's motion -- the satellite's tendency to keep going.This is approximately 17,000 mph (27,359 kph) at an altitude of 150 miles (242 km). Without gravity, the satellite's inertia would carry it off into space. Even with gravity, if the intended satellite goes too fast, it will eventually fly away. On the other hand, if the satellite goes too slowly, gravity will pull it back to Earth.At the correct orbital velocity, gravity exactly balances the satellite's inertia, pulling down toward Earth's center just enough to keep the path of the satellite curving like Earth's curved surface, rather than flying off in a straight line.