ok, so electron affinity is the amount of energy given off when a particular atom excepts electrons. Essentially, it is the likelihood that an atom will accept an electron, while ionization energy is how much energy is needed to take an electron off of a particular atom
ok, so electron affinity is the amount of energy given off when a particular atom excepts electrons. Essentially, it is the likelihood that an atom will accept an electron, while ionization energy is how much energy is needed to take an electron off of a particular atom
An ionic bond forms when there is a large difference in electron affinity between two atoms. Typically, one atom has a high electron affinity (strongly attracts electrons) and the other atom has a low electron affinity (weakly attracts electrons), leading to the transfer of electrons from one atom to the other to form charged ions that are held together by electrostatic forces.
Sr has a relatively low electron affinity. Electron affinity is the energy change when an atom gains an electron to form a negative ion, and for strontium, this energy change is lower compared to other elements.
The energy change that occurs when an electron is added to a neutral atom. This is usually exothermic. Noble Gases are excluded from this. Equation: X(element)+e-(electron)---------> X-1+ energy
Noble gases are not included in electron affinity because they are already stable with a full outer electron shell and do not readily gain or lose electrons. Therefore, they do not have a strong tendency to attract additional electrons to achieve a more stable electron configuration.
Because ions are only form by transfer of electrons and for this one one atom must have low ionization energy and other high electron affinity or their electronegativities difference is higher than 1.7.
Bromine has a higher electron affinity than iodine. This is because bromine has a smaller atomic size, resulting in a stronger attraction for electrons compared to iodine.
AnswerElectron affinity is the energy released when we add an electron to the outermost orbit of the atom. Halogens are the higher in electron affinity, and chlorine has the higher electron affinity than rest of the halogens. The irregularity in the electron affinity trend between Cl and F is due to the small size of the F atom. Although F definitely has a higher attraction for an electron than Cl (as evidenced by its high electro negativity value), the small size of the F atom means that adding an electron creates significant repulsion. Since electron affinity is an energy measurement, the total energy associated with electron affinity winds up being the energy that is released by the electron binding to the nucleus, minus the energy involved in overcoming the electrical repulsion in the outer shell.This makes the fluoride anion so formed unstable due to a very high charge/mass ratio. Also, fluorine has no d electrons which limits its atomic size. As a result, fluorine has an electron affinity less than that of chlorine.
As you go across a period; Left to right, the electron affinity increases. As you go down a group; top to bottom, the electron affinity decreases.
Electron affinity values for noble gases are endothermic because these elements have stable electron configurations and do not readily accept additional electrons. This makes it energetically unfavorable for them to gain an extra electron, resulting in a positive electron affinity value.
No, nitrogen does not have a low electron affinity. Electron affinity increases as you go up and to the right on the periodic table. Thus, Groups I and II elements (ex. Cs, Ba, Sr, etc.) have LOW electron affinities and the halogens in Group VII (Br, Cl, F, etc) have the HIGHEST electron affinities. Chlorine has the HIGHEST electron affinity on the periodic table.(Fluorine is an exception in this case.)
Electron affinity is the energy released when an electron is added to a neutral atom. Elements with a zero electron affinity value include neon, helium, and argon because they have stable electron configurations and do not readily accept additional electrons.