answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: What is the energy of one photon of light with a wavelength of 445nm?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

How do you find the energy of a photon?

You need to know the photon's frequency or wavelength. If you know the wavelength, divide the speed of light by the photon's wavelength to find the frequency. Once you have the photon's frequency, multiply that by Planck's Konstant. The product is the photon's energy.


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


What is the relationship between wavelength of light and the quantity of energy per photon?

The energy per photon is directly proportional to the frequency; the frequency is inversely proportional to the wavelength (since frequency x wavelength = speed of light, which is constant); thus, the energy per photon is inversely proportional to the wavelength.


What is the energy J of photon with a wavelength of 601nm?

for a photon energy= Planks Constant * frequency and frequency= speed of light/wavelength so E= hc/(wavelength) h= 6.63E-34 J/s c= 3E8 m/s Plug n' Chug


Which has more energy a photon of red light or photon of violet light?

The violet light has more energy than the red light. Red light is lower on the electromagnetic spectrum, meaning it has a lower frequency (or longer wavelength). You'll recall the colors of the rainbow as red, orange, yellow, etc., and these are the colors going up the frequency spectrum. Photons higher on the spectrum are higher in frequency and energy.

Related questions

How do you find the energy of a photon?

You need to know the photon's frequency or wavelength. If you know the wavelength, divide the speed of light by the photon's wavelength to find the frequency. Once you have the photon's frequency, multiply that by Planck's Konstant. The product is the photon's energy.


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


What is the relationship between wavelength of light and the quantity of energy per photon?

The energy per photon is directly proportional to the frequency; the frequency is inversely proportional to the wavelength (since frequency x wavelength = speed of light, which is constant); thus, the energy per photon is inversely proportional to the wavelength.


In visible light color is an indication of?

Wavelength, Frequency, or Photon Energy


Photon energy and frequency increases as the wavelength of light?

The energy increases as the frequency increases.The frequency decreases as the wavelength increases.So, the energy decreases as the wavelength increases.


How do you calculate the energy in joules of a photon of green light having a wavelength of 529 nm?

The energy of this photon is 3,7351.10e-19 joules.


What is the energy J of photon with a wavelength of 601nm?

for a photon energy= Planks Constant * frequency and frequency= speed of light/wavelength so E= hc/(wavelength) h= 6.63E-34 J/s c= 3E8 m/s Plug n' Chug


Transition A produces light with a wavelength of 400 nm Transition B involves twice as much energy as A What wavelenth light does it produce?

Energy per photon is proportional to frequency. That tells us that it's alsoinversely proportional to wavelength.So if Photon-A has wavelength of 400-nm, then wavelength of Photon-Bwith twice as much energy is 200-nm .


Which has more energy a photon of red light or photon of violet light?

The violet light has more energy than the red light. Red light is lower on the electromagnetic spectrum, meaning it has a lower frequency (or longer wavelength). You'll recall the colors of the rainbow as red, orange, yellow, etc., and these are the colors going up the frequency spectrum. Photons higher on the spectrum are higher in frequency and energy.


What is the difference between the red and blue colors of light?

Wavelength Frequency and Photon Energy


A change in wavelength produces what change on light?

Frequency, color, energy in each photon.


What is the relationship between the wavelength of light and the quantity of energy per photon?

inversely related