Speed, reaction, function, and alter.
Speed, reaction, function, and alter.
Speed, reaction, function, and alter.
Substrate binding: The enzyme binds to its substrate. Catalysis: The enzyme facilitates the conversion of the substrate into product. Product release: The enzyme releases the product of the reaction. Enzyme recycling: The enzyme returns to its original state to catalyze further reactions.
If an enzyme in a sequence of enzyme-controlled reactions is missing or defective then the process will stop at that point. So respiration could proceed until it reached the reaction which needed the missing or defective enzyme at which point it would stop.
If an enzyme in a sequence of enzyme-controlled reactions is missing or defective then the process will stop at that point. So respiration could proceed until it reached the reaction which needed the missing or defective enzyme at which point it would stop.
true
Too cold for enzyme activity.
The enzyme that activates another enzyme is called a kinase. Kinases add phosphate groups to proteins, a process known as phosphorylation, which can activate or deactivate the target enzyme.
The enzyme that separates the two strands of DNA to start the replication process is called helicase.
The substrate is the molecule that the enzyme acts upon, fitting into the enzyme's active site like a key fitting into a lock. This binding triggers a conformational change in the enzyme that allows it to catalyze the reaction more efficiently. The substrate provides the specific chemical groups and orientation needed for the enzyme to perform its function.
There are four levels of confirmation of an enzyme: primary structure (sequence of amino acids), secondary structure (alpha helix or beta sheet), tertiary structure (overall 3D shape), and quaternary structure (arrangement of multiple subunits). These levels of confirmation are crucial for the enzyme's function and activity.
This includes four stages/steps: capture, manage, store, and deliver.