answersLogoWhite

0

The more energy levels the electron jumps the more energy the emitted light will have. The more energy you have the shorter wavelength there is.

User Avatar

Riley Wolf

Lvl 13
3y ago

What else can I help you with?

Related Questions

Do electrons in stationary states emit the most radiation?

No, electrons in stationary states do not emit radiation because they are in stable energy levels. Radiation is emitted when electrons transition between energy levels, releasing photons of specific energies.


What is the relationship between the light emitted by an atom and the energies of the electrons in the atom?

Light Energy increases as you move down the period table among the alkali group.


When light shines on a metal surface the maximum energies of emitted electrons?

depend on the frequency of the incident light. The maximum energy of emitted electrons is given by the equation E = hf - φ, where E is the maximum energy, h is Planck's constant, f is the frequency of the incident light, and φ is the work function of the metal.


Why do you think are there different color emitted?

There different colors emitted


What is the relationship between frequency and kinetic energy in photoelectric effect?

In the photoelectric effect, increasing the frequency of incident light increases the kinetic energy of the emitted electrons. This is because higher frequency light photons carry more energy, which can be transferred to the electrons during the photoelectric effect.


What three experimental facts about the photoelectric effect could only be explained by atoms idea of atoms absorbing photons a certain energy?

Threshold frequency: The observation that electrons are only emitted when the incident light exceeds a certain frequency, regardless of intensity, supports the idea of atoms absorbing photons of specific energies to release electrons. Stopping potential: The linear relationship between stopping potential and frequency of incident light suggests that electrons gain a fixed amount of energy from absorbing individual photons with discrete energies. Photoelectric current: The instantaneous emission of electrons upon light exposure and the immediate halt of current when light is turned off indicates the discrete nature of photon absorption by atoms, supporting the quantized energy transfer.


What are the 2 energies that are emitted by the sun?

1: Light & heat energy 2: Solar energy.


Is synchrotron radiation emitted perpendicular to the circular path of the electrons?

No, the maximum energy is emitted in the direction of motion of a charge. No energy is emitted in the perpendicular direction. The profile of the drop between these two angles is determined by the velocity (especially whether relativistic or not).


How are electrons involved in light?

None, light is composed of photons. Light may be emitted or absorbed when electrons undergo transitions between atomic or molecular orbitals, but the light itself does not contain electrons.


What is the relationship between the Kelvin temperature and the color of light emitted by an object?

The relationship between the Kelvin temperature and the color of light emitted by an object is that as the temperature increases, the color of the light emitted shifts from red to orange, then to yellow, white, and finally blue as the temperature gets hotter. This is known as blackbody radiation, where higher temperatures correspond to shorter wavelengths and bluer light.


What is the relationship between temperature wavelength in amount of emitted radiation for object?

As the temperature of an object increases, the amount of radiation emitted also increases. The wavelength of the emitted radiation shifts to shorter wavelengths (higher energy) as the temperature rises, following Planck's law. This relationship is described by Wien's displacement law.


What does light do in photoeletric effect?

In the photoelectric effect, light (photons) ejects electrons from a material's surface, creating an electric current. The energy of each photon must exceed the material's work function for electrons to be emitted. The intensity of light affects the number of electrons emitted, while the frequency determines the kinetic energy of the emitted electrons.