answersLogoWhite

0


Best Answer

it depends on the way the 3 resistors are connected and across which two terminals you would like to measure...

if all 3 connected in series the simple...60k....if parrell then (1/10+1/20+1/30)^-1 k

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the total resistance three resistors one 10k one20k one30k?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

Twelve identical wires of resistance 6 ohm each are arranged to form the edges of cube the effective resistance bw the opp corners of cube is?

The effective resistance between opposite corners of a cube comprised of twelve 6 ohm resistors, one at each edge, is 5 ohms. There are several ways to solve this. One approach is to build a system of 12 equations in 12 unknowns, and solve them. Another approach is this... Consider that there are three resistors leaving the input node, and there are three resistors entering the output node. In between those three resistors, there are six resistors in a criss-cross matrix. (Draw it out, flattened, to see this.)Inspecting the six resistors in the center, you note that they are completely symmetrical. Since they are symmetrical, you can conclude that the voltage at the junction between the three input resistors and the six others is the same voltage. The same goes for the three output resistors. Said another way, the voltage across the three input resistors and the three output resistors is the same. Given two or more nodes in a circuit having the same voltage, you can draw a wire connecting them, i.e. a resistor of zero ohms. This does not change the characteristics of the circuit in any way, because zero voltage across any resistance is still zero amperes. Now that you have made these connections, look at the circuit. It has simplified to three parallel resistors, in series with six parallel resistors, in series with three parallel resistors. Three 6 ohm resistors in parallel is 2 ohms. Six 6 ohm resistors in parallel is 1 ohm. Three more 6 ohm resistors in parallel is 2 ohms. The total resistance is 2 + 1 + 2 ohms, or 5 ohms.


How do you calculate the equivalent resistance of a circuit of the shape of a cube and a having a resistor of i kilo ohm in every branch?

Given twelve 1 KOhm resistors, connected in the shape of a cube, in order to determine the net resistance between opposite corners, first draw the cube in two dimensions. (Try this at each step before continuing, so you can understand the lesson as it unfolds.)There are three resistors leaving the initial vertex, and three resistors entering the final vertex. In between those six resistors, are six more resistors, each pair connected together on one end, and to two other resistors on the other end.If every resistor has the same value, then (by symmetry), the voltage on the ends of the first three resistors must be the same. Similarly, the voltage on the ends of the last three resistors must be the same.If two points in a circuit have the same voltage, then (for purposes of analysis) you can consider them to be shorted together. That short does not change the results, as there is no current flowing through that short.With the bottom ends of the first three resistors shorted, and with the top ends of the last three resistors shorted, the circuit degrades into three resistors in parallel, in series with six more resistors in parallel, in series with three more resistors in parallel.Three 1 KOhm resistors in parallel have a net resistance of 333 ohms. Six have a net resistance of 167 ohms. Two 333 ohm resistors and one 167 ohm resistor in series have a net resistance of 833 ohms, or 5/6 of 1 KOhms.Note: This technique does not work if the resistors are not all the same value. In that case, you would need to solve 12 equations in 12 unknowns, looking at the partial currents in each branch.


Which is the total resistance of a circuit that contains twenty 100 ohms resistors connected in parallel?

When resistors of the same value are wired in parallel, the total equivalent resistance (ie the value of one resistor that acts identically to the group of parallel resistors) is equal to the value of the resistors divided by the number of resistors. For example, two 10 ohm resistors in parallel give an equivalent resistance of 10/2=5Ohms. Three 60 ohm resistors in parallel give a total equivalent resistance of 60/3 = 20Ohms. In your case, four 200 Ohm resistors in parallel give 200/4 = 50 Ohms total.


What is the total resistance in a circuit that contains three 60 ohms resistors connected in a series?

The total effective resistance of resistors in series is the sum of the individual resistances.Three 60-ohm resistors in series have a total effective resistance of (60 + 60 + 60) = 180 ohms.


When three resistances are wired in series operating on 15v each resistance receives what volts?

It depends on the value of the three resistors. If they are equal, then each resistor has 5 volts across it.

Related questions

How do you calculate the joint resistance in a series circuit with three resistances?

The resistance of a series circuit is simply the sum of the individual resistors.


What is the equivalent resistance of three resistor with 3 ohms connected in star?

There is no 'equivalent resistance' for three resistors connected in star.


Three 8.0-W resistors are connected in series What is their equivalent resistance?

Three 8.0-W resistors are connected in parallel. What is their equivalent resistance?


What is the total resistance in a circuit that contains three 60 resistors connected in series?

The total effective resistance of resistors in series is the sum of the individual resistances.Three 60-ohm resistors in series have a total effective resistance of (60 + 60 + 60) = 180 ohms.


Twelve identical wires of resistance 6 ohm each are arranged to form the edges of cube the effective resistance bw the opp corners of cube is?

The effective resistance between opposite corners of a cube comprised of twelve 6 ohm resistors, one at each edge, is 5 ohms. There are several ways to solve this. One approach is to build a system of 12 equations in 12 unknowns, and solve them. Another approach is this... Consider that there are three resistors leaving the input node, and there are three resistors entering the output node. In between those three resistors, there are six resistors in a criss-cross matrix. (Draw it out, flattened, to see this.)Inspecting the six resistors in the center, you note that they are completely symmetrical. Since they are symmetrical, you can conclude that the voltage at the junction between the three input resistors and the six others is the same voltage. The same goes for the three output resistors. Said another way, the voltage across the three input resistors and the three output resistors is the same. Given two or more nodes in a circuit having the same voltage, you can draw a wire connecting them, i.e. a resistor of zero ohms. This does not change the characteristics of the circuit in any way, because zero voltage across any resistance is still zero amperes. Now that you have made these connections, look at the circuit. It has simplified to three parallel resistors, in series with six parallel resistors, in series with three parallel resistors. Three 6 ohm resistors in parallel is 2 ohms. Six 6 ohm resistors in parallel is 1 ohm. Three more 6 ohm resistors in parallel is 2 ohms. The total resistance is 2 + 1 + 2 ohms, or 5 ohms.


The total resistance of a circuit with three 30 ohm resistors in parallel is ohms?

If the parallel resistors are equal, then the total resistance (in this case, with three resistors) will decrease by a factor of 3. I suggest you verify this with the standard formula for parallel resistance: 1/R = 1/R1 + 1/R2 + 1/R3, replacing the value 30 for R1, R2, and R3, and calculating R, the combined resistance.


How do you calculate the equivalent resistance of a circuit of the shape of a cube and a having a resistor of i kilo ohm in every branch?

Given twelve 1 KOhm resistors, connected in the shape of a cube, in order to determine the net resistance between opposite corners, first draw the cube in two dimensions. (Try this at each step before continuing, so you can understand the lesson as it unfolds.)There are three resistors leaving the initial vertex, and three resistors entering the final vertex. In between those six resistors, are six more resistors, each pair connected together on one end, and to two other resistors on the other end.If every resistor has the same value, then (by symmetry), the voltage on the ends of the first three resistors must be the same. Similarly, the voltage on the ends of the last three resistors must be the same.If two points in a circuit have the same voltage, then (for purposes of analysis) you can consider them to be shorted together. That short does not change the results, as there is no current flowing through that short.With the bottom ends of the first three resistors shorted, and with the top ends of the last three resistors shorted, the circuit degrades into three resistors in parallel, in series with six more resistors in parallel, in series with three more resistors in parallel.Three 1 KOhm resistors in parallel have a net resistance of 333 ohms. Six have a net resistance of 167 ohms. Two 333 ohm resistors and one 167 ohm resistor in series have a net resistance of 833 ohms, or 5/6 of 1 KOhms.Note: This technique does not work if the resistors are not all the same value. In that case, you would need to solve 12 equations in 12 unknowns, looking at the partial currents in each branch.


The total resistance of a series circuit containing three 10 ohm resistors is ohms.?

30 ohms


What is the equivalent resistance when resistors are in a cube?

The equivalent resistance, from corner to corner, of 12 resistors connected in a cube is 5/6 that of a single resistor.Proof:Start from one corner and flow current through to the opposite corner. You have three resistors. Each of those three resistors is connected to two resistors, in a crisscross pattern. Those six resistors are then connected to three resistors which are connected to the other corner. By symmetry, the voltages at the upper junctions are the same, and then same can be said for the lower junction. You can then simplify the circuit by shorting out the upper junctions and (separately) the lower junctions. This means the circuit is equivalent to three resistors in parallel, in series with six resistors in parallel, in series with three resistors in parallel. This is 1/3 R plus 1/6 R plus 1/3 R, or 5/6 R.


A 120 ohm resistor a 60 ohm resistor and a 40 ohm resistor are connected in parallel to a 120 volt power source. What is the effective resistance of the three resistors?

The effective resistance of those three resistors in parallel is 20 ohms. And it makes no difference what the power source is, or whether they're even connected to a power source at all. As soon as those three resistors are in parallel, their effective resistance is 20 ohms immediately, even if they're still in the drawer.


A 24 volt battery supplies three devices wired in parallel that each have a resistance of 9 ohms. What is the voltage drop across each device?

A simple circuit has three resistors connected in series. The resistors are 14 ohms 12 ohms and 9 ohms. What is the total resistance of the circuit?


Which is the total resistance of a circuit that contains twenty 100 ohms resistors connected in parallel?

When resistors of the same value are wired in parallel, the total equivalent resistance (ie the value of one resistor that acts identically to the group of parallel resistors) is equal to the value of the resistors divided by the number of resistors. For example, two 10 ohm resistors in parallel give an equivalent resistance of 10/2=5Ohms. Three 60 ohm resistors in parallel give a total equivalent resistance of 60/3 = 20Ohms. In your case, four 200 Ohm resistors in parallel give 200/4 = 50 Ohms total.