answersLogoWhite

0

What is transformation formula?

User Avatar

Anonymous

14y ago
Updated: 9/17/2019

Lorentz transformation

In physics, the Lorentz transformation describes how, according to the theory of special relativity, two observers' varying measurements of space and time can be converted into each other's frames of reference. It is named after the Dutch physicistHendrik Lorentz. It reflects the surprising fact that observers moving at different velocities may measure different distances, elapsed times, and even different orderings of events.

The Lorentz transformation was originally the result of attempts by Lorentz and others to explain how the speed of light was observed to be independent of the reference frame, and to understand the symmetries of the laws of electromagnetism. Albert Einstein later re-derived the transformation from his postulates of special relativity. The Lorentz transformation supersedes the Galilean transformation of Newtonian physics, which assumes an absolute space and time (see Galilean relativity). According to special relativity, this is a good approximation only at relative speeds much smaller than the speed of light.

If space is homogeneous, then the Lorentz transformation must be a linear transformation. Also, since relativity postulates that the speed of light is the same for all observers, it must preserve the spacetime interval between any two events in Minkowski space. The Lorentz transformation describes only the transformations in which the spacetime event at the origin is left fixed, so they can be considered as a rotation of Minkowski space. The more general set of transformations that also includes translations is known as the Poincaré group.

Lorentz transformation for frames in standard configurationAssume there are two observers O and Q, each using their own Cartesian coordinate system to measure space and time intervals. O uses (t, x, y, z) and Q uses (t', x', y', z'). Assume further that the coordinate systems are oriented so that the x-axis and the x' -axis are collinear, the y-axis is parallel to the y' -axis, as are the z-axis and the z' -axis. The relative velocity between the two observers is v along the common x-axis. Also assume that the origins of both coordinate systems are the same. If all these hold, then the coordinate systems are said to be in standard configuration. A symmetric presentation between the forward Lorentz Transformation and the inverse Lorentz Transformation can be achieved if coordinate systems are in symmetric configuration. The symmetric form highlights that all physical laws should be of such a kind that they remain unchanged under a Lorentz transformation.

The Lorentz transformation for frames in standard configuration can be shown to be: \begin{cases}

t' &= \gamma \left( t - v x/c^{2} \right) \\ x' &= \gamma \left( x - v t \right)\\ y' &= y \\ z' &= z \end{cases} where \ \gamma = \frac{1}{ \sqrt{1 - { \frac{v^2}{c^2} is called the Lorentz factor.

Matrix formThis Lorentz transformation is called a "boost" in the x-direction and is often expressed in matrix form as

\begin{bmatrix} c t' \\ x' \\ y' \\ z' \end{bmatrix}

\begin{bmatrix} \gamma&-\beta \gamma&0&0\\ -\beta \gamma&\gamma&0&0\\ 0&0&1&0\\ 0&0&0&1\\ \end{bmatrix} \begin{bmatrix} c\,t \\ x \\ y \\ z \end{bmatrix}\ . More generally for a boost in any arbitrary direction (\beta_{x}, \beta_{y}, \beta_{z}),

\begin{bmatrix} c\,t' \\ x' \\ y' \\ z' \end{bmatrix}

\begin{bmatrix} \gamma&-\beta_x\,\gamma&-\beta_y\,\gamma&-\beta_z\,\gamma\\ -\beta_x\,\gamma&1+(\gamma-1)\dfrac{\beta_{x}^{2}}{\beta^{2}}&(\gamma-1)\dfrac{\beta_{x}\beta_{y}}{\beta^{2}}&(\gamma-1)\dfrac{\beta_{x}\beta_{z}}{\beta^{2}}\\ -\beta_y\,\gamma&(\gamma-1)\dfrac{\beta_{y}\beta_{x}}{\beta^{2}}&1+(\gamma-1)\dfrac{\beta_{y}^{2}}{\beta^{2}}&(\gamma-1)\dfrac{\beta_{y}\beta_{z}}{\beta^{2}}\\ -\beta_z\,\gamma&(\gamma-1)\dfrac{\beta_{z}\beta_{x}}{\beta^{2}}&(\gamma-1)\dfrac{\beta_{z}\beta_{y}}{\beta^{2}}&1+(\gamma-1)\dfrac{\beta_{z}^{2}}{\beta^{2}}\\ \end{bmatrix} \begin{bmatrix} c\,t \\ x \\ y \\ z \end{bmatrix}\ , where \beta = \frac{v}{c}=\frac{c} and \gamma = \frac{1}{\sqrt{1-\beta^2}}.

Note that this transformation is only the "boost," i.e., a transformation between two frames whose x, y , and z axis are parallel and whose spacetime origins coincide (see The "Standard configuration" Figure). The most general proper Lorentz transformation also contains a rotation of the three axes, because the composition of two boosts is not a pure boost but is a boost followed by a rotation. The rotation gives rise to Thomas precession. The boost is given by a symmetric matrix, but the general Lorentz transformation matrix need not be symmetric.

The composition of two Lorentz boosts B(u) and B(v) of velocities u and v is given by: B(\mathbf{u})B(\mathbf{v})=B(\mathbf{u}\oplus\mathbf{v})Gyr[\mathbf{u},\mathbf{v}]=Gyr[\mathbf{u},\mathbf{v}]B(\mathbf{v}\oplus\mathbf{u}),

where u\oplusv is the velocity-addition, and Gyr[u,v] is the rotation arising from the composition, gyr being the gyrovector space abstraction of the gyroscopic Thomas precession, and B(v) is the 4x4 matrix that uses the components of v, i.e. v1, v2, v3 in the entries of the matrix, or rather the components of v/c in the representation that is used above.

T

User Avatar

Wiki User

8y ago

What else can I help you with?

Related Questions

Formula transformation and give an example of formula?

explain formula transformation


What is formula and formula transformation?

it is important to fix anything about this problem


What is the formula for transformation?

Rephrase your question so that it makes sense.


What is formula transformation in physics?

Formula transformation is usually used to transform a shape or a set of points to another shape or set of points. It is a set of instructions on how to adjust a given shape or point.


What are the methods of formula transformation?

Formula transformation methods include rearranging terms, combining like terms, factoring, expanding, and substitution of variables. These methods are used to simplify or manipulate formulas to make them easier to work with or solve.


What happens as ice melts and as water evaporates?

Melting is the transformation of a solid in a liquid.Evaporation is the transformation of a liquid in a gas.The chemical formula of water, ice, vapors is identical.


Why is formula transformation important?

Formula transformation is important because it allows one to manipulate and reorganize data in a way that better suits their analysis or presentation needs. It simplifies complex calculations, improves readability, and enables users to quickly adapt to changing requirements without having to recreate the entire dataset.


Inverse transformation of planck's constant 'h' is and dimensional formula of it?

The inverse transformation of Planck's constant 'h' is called the reduced Planck constant, denoted as 'h-bar' or ħ, and it is equal to h divided by 2π. The dimensional formula of h is energy multiplied by time, or [ML^2T^-1].


What are some words with the Latin root form?

formula, formation, reform, deform, perform, transform


What is the process in which bacteria take up pieces take up pieces of DNA from their environment?

transformation


What is a similarity transformation different from a congruence transformation?

The size of the shape changes with a similarity transformation (enlargement), whereas it does not with a congruence transformation.


Is a transformation the same as an isometric transformation?

No it is not.