mainly, an electric current passing throught
Water is made up of molecules with the formula H2O (two hydrogens attached to an oxygen) Of course the H (hydrogen) and O (oxygen) are atoms.
There are 3.34 x 10^22 molecules of H2O in 1.0 g of water.
The molecules of H2O are made up of two hydrogen atoms and one oxygen atom, bonded together. The chemical formula for water is H2O.
When crystallized sugar is put into water, the H2O molecules separate the sugar molecules from each other. This happens because both H2O and sugar molecules are polar. The polarity causes the much smaller H2O molecules to squeeze between the sugar molecules and break the weak van der Waals forces that exists between them. The H2O molecule bonds to the sugar molecule with a stronger bond than the earlier van der Waals force (because of the polarity of the molecules).
0.943 moles H2O (6.022 X 1023/1 mole H2O) = 5.68 X 1023 molecules of water ========================
To calculate the number of molecules in 16.75 grams of H2O, we first need to convert grams to moles (using the molar mass of H2O), and then convert moles to molecules using Avogadro's number. The molar mass of H2O is 18.015 g/mol. After converting, there are approximately 3.52 x 10^23 molecules in 16.75 grams of H2O.
There are 3.505 x 10^23 molecules of H2O in 0.583 mol of H2O, because 1 mol of any substance contains 6.022 x 10^23 molecules.
There is one water molecule in H2O
Formula mass / Formula weight / Molecular mass / Molecular weight of H2O = (1*2) + 16 = 18g 1 mol of H2O = 18g H2O 1 mol of H2O = 6.023 * 10^23 molecules In 18g H2O there are 6.023 * 10^23 molecules. So, In 1g H2O there are (6.023 * 10^23) / 18 molecules = 3.346 * 10^22 molecules Therefore, In 7.3g H2O there are (3.346 * 10^22) * 7.3 molecules = 2.443 * 10^23 molecules Ans: 2.443 * 10^23 molecules
the rule for solving amount of molecules is N(molecules)=6x10^23 x n(amount of mole) therefore there are 6x10^23 molecules in 1 mole of anything or in this case of H20
There are 1.204 x 10^24 water molecules in two moles of water. This is because one mole of anything contains Avogadro's number of particles, which is 6.022 x 10^23. Thus, two moles of water would have twice that number of molecules.
Because of the unequal sharing of electrons. As in H2O, Hydrogen has a positive charge and Oxygen has a negative charge.