It depends on the equivalence point of the solutions you're titrating.
The selection of an indicator for a titration is based on the pH range over which the titration will occur. The indicator should have a color change that aligns with the pH at the equivalence point of the titration. Choosing an indicator with a pH range that encompasses the equivalence point will ensure accurate endpoint detection.
The indicator used in potentiometric titrations is typically a pH electrode. By measuring changes in pH during the titration process, the endpoint of the titration can be determined accurately. The pH electrode provides a continuous measurement of the solution's pH, allowing for a precise determination of the equivalence point.
Methyl orange is not commonly used as an indicator in the titration of Na2CO3 against HCl solution. Phenolphthalein is a suitable indicator for this titration because it changes color in the pH range of the equivalence point.
Phenolphthalein is commonly used as an indicator in the titration of NaOH and H2SO4. It changes color from colorless to pink as the solution reaches a specific pH range, signaling the endpoint of the titration.
it is used as an acid-base indicator
The selection of an indicator for a titration is based on the pH range over which the titration will occur. The indicator should have a color change that aligns with the pH at the equivalence point of the titration. Choosing an indicator with a pH range that encompasses the equivalence point will ensure accurate endpoint detection.
pH range of indicator should be in the rapid pH gradient.
The indicator used in potentiometric titrations is typically a pH electrode. By measuring changes in pH during the titration process, the endpoint of the titration can be determined accurately. The pH electrode provides a continuous measurement of the solution's pH, allowing for a precise determination of the equivalence point.
Methyl orange is not commonly used as an indicator in the titration of Na2CO3 against HCl solution. Phenolphthalein is a suitable indicator for this titration because it changes color in the pH range of the equivalence point.
Phenolphthalein is commonly used as an indicator in the titration of NaOH and H2SO4. It changes color from colorless to pink as the solution reaches a specific pH range, signaling the endpoint of the titration.
No.
it is used as an acid-base indicator
No, methyl orange is not commonly used as the indicator in the titration of Na2CO3 against HCl solution. Phenolphthalein is the indicator of choice for this titration, as the endpoint is at a pH of around 8.2, which is the color change range of phenolphthalein.
Phenolphtalein change colorless at pH < 8 to purple blue at pH > 8 to 10
Phenolphthalein is used as an indicator during the titration of tartaric acid because the pH at which phenolphthalein changes color (around pH 8.2-10) is close to the equivalence point of the titration of tartaric acid with a strong base like NaOH. This makes it a suitable indicator for detecting the endpoint of the titration when the acid has been completely neutralized by the base.
The color of the endpoint for the titration of an acid depends on the specific indicator used. Common indicators include phenolphthalein (pink at high pH), methyl orange (red at low pH), and bromothymol blue (yellow at low pH). The choice of indicator will depend on the pH range of the acid being titrated.
Phenolphthalein is used in titration experiments as an acid-base indicator because it changes color at a specific pH range (pH 8.2-10.0), making it easy to visually detect the endpoint of the titration when the solution changes from acidic to basic or vice versa. This helps in determining the volume of titrant needed to reach the equivalence point accurately.