Brightness and Temperature are the two characteristics plotted on the H-R diagram a diagram used to plot the absolute magnitude of stars and their temperatures
The two characteristics of a star plotted on the Hertzsprung-Russell diagram are luminosity (brightness) on the y-axis and temperature or spectral type on the x-axis. This diagram helps astronomers classify stars according to their different stages of evolution.
The Hertzsprung-Russell diagram, or H-R diagram, was created in 1911 by Ejnar Hertzsprung and Henry Norris Russell. They plotted the luminosity of stars against their surface temperature to classify and study stellar populations. This diagram revolutionized our understanding of stars and their life cycles.
That's short for Hertzsprung-Russel diagram. It is a diagram in which the total luminosity versus color (and therefore temperature) of many stars is plotted.
Most stars are plotted along the main sequence in the Hertzsprung-Russell (HR) diagram, which extends diagonally from the upper left (hot and luminous stars) to the lower right (cool and less luminous stars). This is because the majority of stars, including our Sun, spend the majority of their lives in the main sequence phase where they are fusing hydrogen into helium.
If you mean a Hertzsprung-Russell Diagram, which plots stars color, temperature, and absolute magnitude (see related link), then it looks like color and spectral class (temperature) are plotted on horizontal, and Absolute Magnitude/Lumenoscity are plotted on the vertical.
Nebulae themselves are not directly plotted on the Hertzsprung-Russell (HR) diagram, which is a graphical representation of stars based on their luminosity and temperature. However, nebulae are often the regions where stars form, and the stars that emerge from these nebulae can be represented on the HR diagram. The HR diagram primarily focuses on the evolutionary stages of individual stars rather than the nebulae from which they originate.
This is usually called the Hertsprung-Russell diagram.
The Hertzsprung--Russell diagram is a scatter graph of stars showing the relationship between the stars' absolute magnitudes or luminosities versus their spectral types or classifications and effective temperatures.Because the luminosity is low or non existent in the case of black holes, they do not appear on the HR diagram.
The one thing that determines where a star is plotted on the main sequence is its mass. A star's mass influences its temperature, luminosity, and lifespan, which are key characteristics that define its position on the Hertzsprung-Russell diagram. More massive stars are hotter and more luminous, appearing on the upper left of the main sequence, while less massive stars are cooler and dimmer, located on the lower right.
The Russell diagram, also known as the Russell-Vogt diagram, is a graphical representation used in astrophysics to illustrate the relationship between a star's luminosity and its temperature (or spectral class). It typically features temperature on the horizontal axis and luminosity on the vertical axis, with stars plotted according to these characteristics. The diagram highlights different stellar groups, such as main-sequence stars, giants, and white dwarfs, providing insights into stellar evolution and classification.
The Hertzsprung-Russell (H-R) diagram illustrates the relationship between a star's surface temperature (or color) and its luminosity (or absolute brightness). Stars are typically plotted on this diagram with temperature decreasing from left to right, and luminosity increasing from bottom to top. The position of a star on the H-R diagram indicates its stage in the stellar lifecycle, with main sequence stars, giants, and white dwarfs occupying different regions. Thus, a star's temperature and luminosity provide insights into its size, age, and evolutionary status.
The night sky displays stars of varying brightness due to their distances from Earth, intrinsic luminosities, and the effects of interstellar dust. In contrast, the Hertzsprung-Russell (HR) diagram represents stars based on their absolute magnitudes, which standardizes their brightness at a common distance. This results in many stars appearing similar in magnitude on the HR diagram despite their apparent brightness differences in the night sky. Thus, the HR diagram emphasizes stellar properties rather than observational effects.